Critical exponents of O(N) models in fractional dimensions

被引:51
|
作者
Codello, Alessandro [1 ,2 ]
Defenu, Nicolo [3 ]
D'Odorico, Giulio [4 ]
机构
[1] Univ Southern Denmark, Origins CP3, DK-5230 Odense M, Denmark
[2] Univ Southern Denmark, Danish IAS, DK-5230 Odense M, Denmark
[3] SISSA, I-34136 Trieste, Italy
[4] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 10期
基金
新加坡国家研究基金会;
关键词
EXACT RENORMALIZATION-GROUP; DERIVATIVE EXPANSION; PHASE-TRANSITIONS; FIELD-THEORY; BEHAVIOR; ABSENCE; ORDER;
D O I
10.1103/PhysRevD.91.105003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We compute critical exponents of O(N) models in fractional dimensions between d = 2 and 4, and for continuous values of the number of field components N, in this way completing the RG classification of universality classes for these models. These curves represent nonperturbative approximation to the exact results, they respect all the qualitative features expected from such quantities conciliating previously known perturbative results in three dimensions with exact results in two dimensions and giving a strong indication of what could be the exact behavior of such curves. We also report critical exponents for some multicritical universality classes in the cases N >= 2 and N = 0. Finally, in the large-N limit our critical exponents correctly approach those of the spherical model, allowing us to set N similar to 100 as the threshold for the quantitative validity of leading order large-N estimates.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] EXACT CRITICAL-POINT AND CRITICAL EXPONENTS OF O(N) MODELS IN 2 DIMENSIONS
    NIENHUIS, B
    [J]. PHYSICAL REVIEW LETTERS, 1982, 49 (15) : 1062 - 1065
  • [3] Critical O(N) models in 6-ε dimensions
    Fei, Lin
    Giombi, Simone
    Klebanov, Igor R.
    [J]. PHYSICAL REVIEW D, 2014, 90 (02):
  • [4] Analyticity of critical exponents of the O(N) models from nonperturbative renormalization
    Chlebicki, Andrzej Z.
    Jakubczyk, Pawel M.
    [J]. SCIPOST PHYSICS, 2021, 10 (06):
  • [5] Parafermionic excitations and critical exponents of random cluster and O(n) models
    Delfino, Gesualdo
    [J]. ANNALS OF PHYSICS, 2013, 333 : 1 - 11
  • [6] CRITICAL EXPONENTS OF THE SAND PILE MODELS IN 2 DIMENSIONS
    MANNA, SS
    [J]. PHYSICA A, 1991, 179 (02): : 249 - 268
  • [7] High-accuracy critical exponents of O(N) hierarchical sigma models
    Godina, JJ
    Li, L
    Meurice, Y
    Oktay, MB
    [J]. PHYSICAL REVIEW D, 2006, 73 (04)
  • [8] CRITICAL EXPONENTS IN 3.99 DIMENSIONS
    WILSON, KG
    FISHER, ME
    [J]. PHYSICAL REVIEW LETTERS, 1972, 28 (04) : 240 - &
  • [9] CRITICAL EXPONENTS IN 3 DIMENSIONS
    TSUNETO, T
    UENO, S
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1975, 54 (05): : 1570 - 1572
  • [10] Critical Exponents in Zero Dimensions
    A. Alexakis
    F. Pétrélis
    [J]. Journal of Statistical Physics, 2012, 149 : 738 - 753