High-accuracy critical exponents of O(N) hierarchical sigma models

被引:4
|
作者
Godina, JJ
Li, L
Meurice, Y
Oktay, MB
机构
[1] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
[2] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[3] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland
关键词
D O I
10.1103/PhysRevD.73.047701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We perform high-accuracy calculations of the critical exponent gamma and its subleading exponent for the 3D O(N) Dyson's hierarchical model for N up to 20. We calculate the critical temperatures for the nonlinear sigma model measure delta(phi(->).phi(->)-1). We discuss the possibility of extracting the first coefficients of the 1/N expansion from our numerical data. We show that the leading and subleading exponents agree with the Polchinski equation and the equivalent Litim equation, in the local potential approximation, with at least 4 significant digits.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] High-accuracy critical exponents for O(N) hierarchical 3D sigma models
    Godina, J. J.
    Li, L.
    Meurice, Y.
    Oktay, M. B.
    PARTICLES AND FIELDS, PT A, 2006, 857 : 186 - +
  • [2] High-accuracy calculations of the critical exponents of Dyson's hierarchical model
    Godina, JJ
    Meurice, Y
    Oktay, MB
    PHYSICAL REVIEW D, 1999, 59 (09)
  • [3] Critical exponents of O(N) models in fractional dimensions
    Codello, Alessandro
    Defenu, Nicolo
    D'Odorico, Giulio
    PHYSICAL REVIEW D, 2015, 91 (10):
  • [4] High-accuracy scaling exponents in the local potential approximation
    Bervillier, Claude
    Juettner, Andreas
    Litim, Daniel F.
    NUCLEAR PHYSICS B, 2007, 783 (03) : 213 - 226
  • [5] Analyticity of critical exponents of the O(N) models from nonperturbative renormalization
    Chlebicki, Andrzej Z.
    Jakubczyk, Pawel M.
    SCIPOST PHYSICS, 2021, 10 (06):
  • [6] Parafermionic excitations and critical exponents of random cluster and O(n) models
    Delfino, Gesualdo
    ANNALS OF PHYSICS, 2013, 333 : 1 - 11
  • [7] HIGH-ACCURACY CRITICAL ANGLE REFRACTOMETRY
    TENTORI, D
    FAMOZO, CL
    OPTICAL ENGINEERING, 1993, 32 (03) : 593 - 601
  • [8] EXACT CRITICAL-POINT AND CRITICAL EXPONENTS OF O(N) MODELS IN 2 DIMENSIONS
    NIENHUIS, B
    PHYSICAL REVIEW LETTERS, 1982, 49 (15) : 1062 - 1065
  • [9] CRITICAL EXPONENTS FROM THE LARGE N EXPANSION FOR THE 3-DIMENSIONAL O(3)-SIGMA MODEL
    GRACEY, JA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (04): : L197 - L200
  • [10] Finite size effects on measures of critical exponents in d=3 O(N) models
    Ballesteros, HG
    Fernandez, LA
    MartinMayor, V
    Sudupe, AM
    PHYSICS LETTERS B, 1996, 387 (01) : 125 - 131