Integrable nonconservative dynamical systems on the tangent bundle of the multidimensional sphere

被引:1
|
作者
Shamolin, M. V. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
BODY;
D O I
10.1134/S0012266116060033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a class of nonconservative systems of differential equations on the tangent bundle of the sphere of any finite dimension. This class has a complete set of first integrals, which can be expressed as finite combinations of elementary functions. Most of these first integrals consist of transcendental functions of their phase variables. Here the property of being transcendental is understood in the sense of the theory of functions of the complex variable in which transcendental functions are functions with essentially singular points.
引用
收藏
页码:722 / 738
页数:17
相关论文
共 50 条
  • [41] Tangent response in coupled dynamical systems
    Yan Hua
    Wei Ping
    Xiao Xian-Ci
    CHINESE PHYSICS B, 2010, 19 (09)
  • [42] Magnetic trajectories on tangent sphere bundle with g-natural metrics
    Abbassi, Mohamed Tahar Kadaoui
    Amri, Noura
    Munteanu, Marian Ioan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (03) : 1033 - 1054
  • [43] Closed geodesics in the tangent sphere bundle of a hyperbolic three-manifold
    Carreras, M
    Salvai, M
    TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) : 149 - 161
  • [44] Magnetic trajectories on tangent sphere bundle with g-natural metrics
    Mohamed Tahar Kadaoui Abbassi
    Noura Amri
    Marian Ioan Munteanu
    Annali di Matematica Pura ed Applicata (1923 -), 2021, 200 : 1033 - 1054
  • [45] Tangent response in coupled dynamical systems
    闫华
    魏平
    肖先赐
    Chinese Physics B, 2010, 19 (09) : 221 - 229
  • [46] Tangent bundle of unit 2-sphere and slant ruled surfaces
    Karaca, Emel
    Caliskan, Mustafa
    FILOMAT, 2023, 37 (02) : 491 - 503
  • [47] MINIMAL LEGENDRIAN SURFACES IN THE TANGENT SPHERE BUNDLE OF S3
    Li, Mingyan
    Wang, Yanan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 2205 - 2220
  • [48] Minimal Legendrian surfaces in the tangent sphere bundle of R3
    Li, Mingyan
    Wang, Guofang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (11) : 2607 - 2628
  • [49] Discrete integrable systems: Multidimensional consistency
    Zhang Da-Jun
    ACTA PHYSICA SINICA, 2020, 69 (01)
  • [50] Integrable Systems on a Sphere, an Ellipsoid and a Hyperboloid
    Tsiganov, Andrey V.
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (06): : 805 - 821