Central Limit Theorem and Diophantine Approximations

被引:7
|
作者
Bobkov, Sergey G. [1 ]
机构
[1] Univ Minnesota, Sch Math, 127 Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Central limit theorem; Diophantine approximation; Edgeworth expansions;
D O I
10.1007/s10959-017-0770-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F-n denote the distribution function of the normalized sum Z(n) = (X-1+ ... +X-n)/(sigma root n) of i.i.d. random variables with finite fourth absolute moment. In this paper, polynomial rates of convergence of F-n to the normal law with respect to the Kolmogorov distance, as well as polynomial approximations of F-n by the Edgeworth corrections (modulo logarithmically growing factors in n), are given in terms of the characteristic function of X-1. Particular cases of the problem are discussed in connection with Diophantine approximations.
引用
收藏
页码:2390 / 2411
页数:22
相关论文
共 50 条
  • [31] ON MULTIDIMENSIONAL CENTRAL LIMIT THEOREM
    SADIKOVA, SM
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (01): : 164 - &
  • [32] CENTRAL LIMIT-THEOREM
    LECAM, L
    ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (02): : 826 - +
  • [33] ON CENTRAL LIMIT THEOREM IN RK
    VONBAHR, B
    ARKIV FOR MATEMATIK, 1967, 7 (01): : 61 - &
  • [34] Central limit theorem and chaoticity
    Wu, Xinxing
    Chen, Guanrong
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 137 - 142
  • [35] The central limit theorem and chaos
    Ying-xuan Niu
    Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 230 - 236
  • [37] Central limit theorem for capacities
    Hu, Feng
    Zhang, Defei
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (19-20) : 1111 - 1114
  • [38] A Randomized Central Limit Theorem
    Eliazar, Iddo
    Klafter, Joseph
    CHEMICAL PHYSICS, 2010, 370 (1-3) : 290 - 293
  • [39] On the universal AS central limit theorem
    Hoermann, S.
    ACTA MATHEMATICA HUNGARICA, 2007, 116 (04) : 377 - 398
  • [40] The central limit theorem and ergodicity
    Niu, Yingxuan
    Wang, Yi
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (15-16) : 1180 - 1184