An Auxiliary Differential Equation Method for FDTD Modeling of Wave Propagation in Cole-Cole Dispersive Media

被引:37
|
作者
Rekanos, Ioannis T. [1 ]
Papadopoulos, Theseus G. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Sch Engn, Div Phys, GR-54124 Thessaloniki, Greece
关键词
Finite-difference time-domain (FDTD); Cole-Cole model; Pade approximation; dispersive media; DIELECTRIC-PROPERTIES; FINITE-DIFFERENCE; FORMULATION;
D O I
10.1109/TAP.2010.2071365
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A method for modeling time-domain wave propagation in dispersive Cole-Cole media is presented. The Cole-Cole model can describe the frequency dependence of the electromagnetic properties of various biological tissues with great accuracy over a wide frequency range and plays a key role in microwave medical imaging. The main difficulty in the time-domain modeling of Cole-Cole media is the appearance of fractional time derivatives. In the proposed method a Pade approximation is employed resulting in auxiliary differential equations of integer order. A finite-difference time-domain method is developed to solve the differential equations obtained. The comparison of analytical and calculated relative complex permittivity values over wideband frequency domain proves the validity of the method.
引用
下载
收藏
页码:3666 / 3674
页数:9
相关论文
共 50 条
  • [41] 2D-FDTD- UPML Simulation of Wave Propagation on Dispersive Media
    Mehennaoui, N.
    Merzouki, Az.
    Slimani, D.
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [42] Modeling and stability considerations for FDTD analysis of wave propagation in lossy dispersive soils
    Weedon, WH
    Rappaport, CM
    Silevitch, D
    RADAR SENSOR TECHNOLOGY, 1996, 2747 : 245 - 251
  • [43] Auxiliary differential equation (ADE) method based complying-divergence implicit FDTD method for simulating the general dispersive anisotropic material
    Xie, G. U. O. D. A.
    Hou, G. U. I. L. I. N.
    Feng, N. A. I. X. I. N. G.
    Song, K. A. I. H. O. N. G.
    Fang, M. I. N. G.
    LI, Y. I. N. G. S. O. N. G.
    Wu, X. I. A. N. L. I. A. N. G.
    Huang, Z. H. I. X. I. A. N. G.
    OPTICS EXPRESS, 2023, 31 (11) : 18468 - 18486
  • [44] Efficient Modeling of Dispersive Media in Leapfrog WCS-FDTD Method
    Zhai, Menglin
    Zhang, Lei
    Li, Demin
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2020, 30 (03) : 225 - 228
  • [45] ADE-Laguerre-FDTD Method for Wave Propagation in General Dispersive Materials
    Chen, Wei-Jun
    Shao, Wei
    Wang, Bing-Zhong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (05) : 228 - 230
  • [46] An FDTD algorithm for wave propagation in dispersive media using higher-order schemes
    Prokopidis, KP
    Kosmidou, EP
    Tsiboukis, TD
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2004, 18 (09) : 1171 - 1194
  • [47] A simple absorbing boundary condition for FDTD modeling of lossy, dispersive media based on the one-way wave equation
    Kosmas, P
    Rappaport, C
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) : 2476 - 2479
  • [48] Multiscale modeling of wave propagation: FDTD/MD hybrid method
    Muralidharan, K
    Deymier, PA
    Simmons, JH
    MODELING AND NUMERICAL SIMULATION OF MATERIALS BEHAVIOR AND EVOLUTION, 2002, 731 : 15 - 20
  • [49] Auxiliary differential equation finite-element time-domain method for electromagnetic analysis of dispersive media
    Li, Linqian
    Wei, Bing
    Yang, Qian
    Ge, Debiao
    OPTIK, 2019, 184 : 189 - 196
  • [50] Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition
    Yuan, XJ
    Borup, D
    Wiskin, J
    Berggren, P
    Johnson, SA
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1999, 46 (01) : 14 - 23