On the Cramer-Rao Bound for Sparse Linear Arrays

被引:2
|
作者
Friedlander, B. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Elect & Comp Engn, Santa Cruz, CA 95064 USA
关键词
D O I
10.1109/IEEECONF51394.2020.9443292
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using the stochastic Cramer-Rao bound for direction estimation we study the performance of nonuniformly spaced linear antenna arrays. We show that the estimation accuracy of such arrays depends primarily on the integrated SNR and the array aperture. It depends rather weakly on the exact layout of the antennas within the aperture. We also note that almost any nonuniform linear array is capable of estimating more signals than the number of antennas, but accuracy degrades quickly once the number of signals exceeds the number of antennas.
引用
收藏
页码:1255 / 1259
页数:5
相关论文
共 50 条
  • [21] A TIGHTER BAYESIAN CRAMER-RAO BOUND
    Bacharach, Lucien
    Fritsche, Carsten
    Orguner, Umut
    Chaumette, Eric
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5277 - 5281
  • [22] The Constrained Misspecified Cramer-Rao Bound
    Fortunati, Stefano
    Gini, Fulvio
    Greco, Maria S.
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 718 - 721
  • [23] Coarrays, MUSIC, and the Cramer-Rao Bound
    Wang, Mianzhi
    Nehorai, Arye
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (04) : 933 - 946
  • [24] A variational interpretation of the Cramer-Rao bound
    Fauss, Michael
    Dytso, Alex
    Poor, H. Vincent
    SIGNAL PROCESSING, 2021, 182
  • [25] Cramer-Rao Lower Bound for Bayesian Estimation of Quantized MMV Sparse Signals
    Thoota, Sai Subramanyam
    Murthy, Chandra R.
    SPAWC 2021: 2021 IEEE 22ND INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC 2021), 2020, : 171 - 175
  • [26] Analysis of the Sparse Super Resolution Limit Using the Cramer-Rao Lower Bound
    Hockmann, Mathias
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 390 - 395
  • [27] On the Cramer-Rao Bound for Estimating the Mixing Matrix in Noisy Sparse Component Analysis
    Zayyani, Hadi
    Babaie-zadeh, Masoud
    Haddadi, Farzan
    Jutten, Christian
    IEEE SIGNAL PROCESSING LETTERS, 2008, 15 : 609 - 612
  • [28] THE HYBRID CRAMER-RAO BOUND AND THE GENERALIZED GAUSSIAN LINEAR ESTIMATION PROBLEM
    Noam, Y.
    Messer, H.
    2008 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2008, : 395 - 399
  • [29] Compressed Arrays and Hybrid Channel Sensing: A Cramer-Rao Bound Based Analysis
    Koochakzadeh, Ali
    Pal, Piya
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1395 - 1399
  • [30] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24