A short proof of a min-max relation for the bases packing of a matroid

被引:0
|
作者
Chaourar, Brahim [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
关键词
Matroid; packing of bases; facets; locked subsets;
D O I
10.1142/S1793830919500691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a finite set, and M be a matroid defined on E. Given w is an element of R-+(E), we use the notations (w-maximum bases packing for the first one): lambda(w) = Max{Sigma(Bbasis) lambda(B) such that Sigma(B(sic)e) lambda(B) <= w(e) for any e is an element of E, and lambda(B) >= 0 for any basis B}, and w(l) = Min [GRAPHICS] such that U subset of E and r(U) <= r(E) - 1}. In this paper, we give a short proof for the known min-max relation lambda(w) = w(l). Moreover, we prove that the minimum w(l) can be restricted to single elements and semi locked subsets only. A subset L subset of E is semi locked in M if M*vertical bar(E\L) is closed and 2- connected, and min{r(L), r*(E\L)} >= 2. We deduce then a polynomial algorithm to compute w(l) in a large class of matroids by using a matroid oracle related to semi locked subsets.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] On a min-max theorem
    Wu G.R.
    Huang W.H.
    Shen Z.H.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (3) : 293 - 298
  • [22] Min-max and min-max regret versions of combinatorial optimization problems: A survey
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (02) : 427 - 438
  • [23] Pseudo-polynomial algorithms for min-max and min-max regret problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. Operations Research and Its Applications, 2005, 5 : 171 - 178
  • [24] Min-max and min-max (relative) regret approaches to representatives selection problem
    Dolgui, Alexandre
    Kovalev, Sergey
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (02): : 181 - 192
  • [25] Min-max relation for monotone path systems in simple regions
    Cameron, K
    [J]. COMBINATORICA, 2000, 20 (03) : 435 - 440
  • [26] Approximation and resolution of min-max and min-max regret versions of combinatorial optimization problems
    Aissi H.
    [J]. 4OR, 2006, 4 (4) : 347 - 350
  • [27] Min-max and max-min graph saturation parameters
    Sudha, S.
    Arumugam, S.
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 943 - 947
  • [28] Approximation of min-max and min-max regret versions of some combinatorial optimization problems
    Aissi, Hassene
    Bazgan, Cristina
    Vanderpooten, Daniel
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 179 (02) : 281 - 290
  • [29] Min-Max Programming Problem Subject to Addition-Min Fuzzy Relation Inequalities
    Yang, Xiao-Peng
    Zhou, Xue-Gang
    Cao, Bing-Yuan
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2016, 24 (01) : 111 - 119
  • [30] A MIN-MAX THEOREM ON POTENTIALS
    KAUFMAN, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 799 - 800