Water distillation performance of carbon nanotube membrane: Non-equilibrium molecular dynamics simulation

被引:9
|
作者
Norouzi, Elnaz [1 ]
Park, Chanwoo [1 ]
机构
[1] Univ Missouri, Dept Mech & Aerosp Engn, E2402 Lafferre Hall, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Direct contact membrane distillation; Carbon nanotube; Flooding; Contact angle; Knudsen diffusivity; MASS-TRANSPORT; DIFFUSION; MECHANISM; SYSTEM; ENERGY; FLOW; GAS;
D O I
10.1016/j.desal.2019.114299
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon nanotube (CNT) has a great potential as membrane material for water distillation because of its smooth and hydrophobic surface. We numerically investigated the distillation performance of CNT membrane for direct contact membrane distillation using non-equilibrium molecular dynamics (NEMD) simulation by varying diameters and lengths of the CNT and system operating conditions such as temperature, temperature difference between feed (hot) and permeate (cold) reservoirs, and sodium chloride (NaCI) concentration in the feed reservoir. It was found from the NEMD simulations that the distillation performance is enhanced by increasing system temperature, reservoir temperature difference, and CNT diameter, and decreasing CNT length, atomic attraction strength between water molecules and CNT, and NaCI concentration. The NEMD simulation overpredicts the water vapor transport by approximately an order of magnitude as compared with the results from the Knudsen diffusion model. The simulated flooding pressure is in good agreement with the theoretical prediction by the Young-Laplace equation using the MD-calculated contact angle. Most importantly, the permeability of the CNT membrane is two orders-of-magnitudes higher than a common polymer-based membrane made of Polytetrafluoroethylene (PTFE) due to almost two order-of-magnitude higher Knudsen diffusion of the CNT membrane than that of the PTFE membrane.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Thermal conductivity of carbon nanotube-polyamide-6,6 nanocomposites: Reverse non-equilibrium molecular dynamics simulations
    Alaghemandi, Mohammad
    Mueller-Plathe, Florian
    Boehm, Michael C.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (18):
  • [32] On multiscale non-equilibrium molecular dynamics simulations
    Li, Shaofan
    Sheng, Ni
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 998 - 1038
  • [33] On non-equilibrium molecular dynamics with Euclidean objectivity
    Zidong Yang
    James D. Lee
    I-Shih Liu
    Azim Eskandarian
    Acta Mechanica, 2017, 228 : 693 - 710
  • [34] On non-equilibrium molecular dynamics with Euclidean objectivity
    Yang, Zidong
    Lee, James D.
    Liu, I-Shih
    Eskandarian, Azim
    ACTA MECHANICA, 2017, 228 (02) : 693 - 710
  • [35] Nanowire Stretching by Non-Equilibrium Molecular Dynamics
    Heyes, D. M.
    Dini, D.
    Smith, E. R.
    Branka, A. C.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (12):
  • [36] Molecular Dynamics in the Light of Non-equilibrium Thermodynamics
    Aoki, Keiko M.
    Ohnishi, Shuhei
    Sogo, Kiyoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2022, 91 (07)
  • [37] COMMENTS ON NON-EQUILIBRIUM MOLECULAR-DYNAMICS
    ALDER, BJ
    PHYSICA A, 1983, 118 (1-3): : 413 - 418
  • [38] Heat transfer in strained twin graphene: A non-equilibrium molecular dynamics simulation
    Rezaee, Fatemeh
    Yousefi, Farrokh
    Khoeini, Farhad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 564
  • [39] Non-equilibrium by molecular dynamics: a dynamical approach
    Ciccotti, Giovanni
    Ferrario, Mauro
    MOLECULAR SIMULATION, 2016, 42 (16) : 1385 - 1400
  • [40] Analog/RF Performance Analysis of Coaxial Carbon Nanotube MOSFET from non-Equilibrium Green's Function Simulation
    Che, Yuchi
    He, Jin
    Liang, Hailang
    Chen, Qin
    Wang, Cheng
    He, Hongyu
    Cao, Yu
    NANOTECHNOLOGY 2012, VOL 1: ADVANCED MATERIALS, CNTS, PARTICLES, FILMS AND COMPOSITES, 2012, : 264 - 268