Solid State Supercapacitor Based on Manganese Oxide@Reduced Graphene Oxide and Polypyrrole Electrodes

被引:20
|
作者
Arul, N. Sabari [1 ]
Han, Jeong In [1 ]
Chen, Pao Chi [2 ]
机构
[1] Dongguk Univ Seoul, Dept Chem & Biochem Engn, Seoul 04620, South Korea
[2] Lunghwa Univ Sci & Technol, Dept Chem & Mat Engn, Taoyuan, Taiwan
来源
CHEMELECTROCHEM | 2018年 / 5卷 / 19期
基金
新加坡国家研究基金会;
关键词
Mn3O4; nanostructures; polypyrrole; reduced graphene oxide; solid state supercapacitors; HIGH-PERFORMANCE SUPERCAPACITORS; ELECTROCHEMICAL ENERGY-STORAGE; SINGLE-STEP SYNTHESIS; HYDROTHERMAL SYNTHESIS; ASYMMETRIC SUPERCAPACITORS; SOLVOTHERMAL SYNTHESIS; ASSISTED SYNTHESIS; HIGH-CAPACITANCE; MN3O4; FACILE;
D O I
10.1002/celc.201800700
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A Mn3O4 nanocrystals@reduced graphene oxide nanocomposite (MRNC) is prepared using a hydrothermal method. Structural analysis of the synthesized MRNC shows the formation of tetragonal hausmannite phase of Mn3O4 nanocrystals and reduced graphene oxide (rGO) sheet/scrolls. As electrode material for supercapacitors, MRNC reaches a specific capacitance of 611 Fg(-1) with excellent stability showing a cycling stability of 95% after 3000 cycles. In addition, polypyrrole (PPy) films with various thicknesses are deposited on flexible carbon fiber via electrodeposition method. A solid state asymmetric supercapacitor (ASC) based on MRNC as positive and PPy as negative electrode was assembled. The assembled ASC delivers a maximum energy density and power density of 32 Whkg(-1) and 833 Wkg(-1), respectively, with excellent cycling stability (90% capacitance retention after 6000 cycles). The result reveals that the MRNC is a promising candidate as superior electrode material for supercapacitors.
引用
收藏
页码:2747 / 2757
页数:11
相关论文
共 50 条
  • [31] A High-Performance Asymmetric Supercapacitor Based on Tungsten Oxide Nanoplates and Highly Reduced Graphene Oxide Electrodes
    Ashraf, Muhammad
    Shah, Syed Shaheen
    Khan, Ibrahim
    Aziz, Md. Abdul
    Ullah, Nisar
    Khan, Mujeeb
    Adil, Syed Farooq
    Liaqat, Zainab
    Usman, Muhammad
    Tremel, Wolfgang
    Tahir, Muhammad Nawaz
    CHEMISTRY-A EUROPEAN JOURNAL, 2021, 27 (23) : 6973 - 6984
  • [32] High voltage binder free hybrid supercapacitor based on reduced graphene oxide/graphene oxide electrodes and "water in salt" electrolyte
    Khademi, B.
    Nateghi, M. R.
    Shayesteh, M. R.
    Nasirizadeh, N.
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [33] Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications
    Atri, Priyanka
    Tiwari, Dinesh Chandra
    Sharma, Rishi
    SYNTHETIC METALS, 2017, 227 : 21 - 28
  • [34] Pseudocapacitive Polydopamine Functionalized on Reduced Graphene Oxide as Hybrid Supercapacitor Electrodes
    Kim, Sung-Kon
    POLYMER-KOREA, 2019, 43 (01) : 46 - 51
  • [35] MoS2-Reduced Graphene Oxide Electrodes for Electrochemical Supercapacitor
    Sarode, K. M.
    Bachhav, S. G.
    Patil, U. D.
    Patil, D. R.
    TECHNO-SOCIETAL 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SOCIETAL APPLICATIONS - VOL 1, 2020, : 1045 - 1051
  • [37] Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes
    Rasul, S.
    Alazmi, A.
    Jaouen, K.
    Hedhili, M. N.
    Costa, P. M. F. J.
    CARBON, 2017, 111 : 774 - 781
  • [38] Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes
    Wang, Qi
    Plylahan, Nareerat
    Shelke, Manjusha V.
    Devarapalli, Rami Reddy
    Li, Musen
    Subramanian, Palaniappan
    Djenizian, Thierry
    Boukherroub, Rabah
    Szunerits, Sabine
    Carbon, 2014, 68 : 175 - 184
  • [39] Reduced graphite oxide in supercapacitor electrodes
    Lobato, Belen
    Vretenar, Viliam
    Kotrusz, Peter
    Hulman, Martin
    Centeno, Teresa A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2015, 446 : 203 - 207
  • [40] Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes
    Wang, Qi
    Plylahan, Nareerat
    Shelke, Manjusha V.
    Devarapalli, Rami Reddy
    Li, Musen
    Subramanian, Palaniappan
    Djenizian, Thierry
    Boukherroub, Rabah
    Szunerits, Sabine
    CARBON, 2014, 68 : 175 - 184