We investigate the global stability character of the equilibrium points and the period-two solutions of y(n+1) = (py(n) + y(n-1))/(r + qy(n) + y(n-1)), n = 0, 1,..., with positive parameters and nonnegative initial conditions. We show that every solution of the equation in the title converges to either the zero equilibrium, the positive equilibrium, or the period-two solution, for all values of parameters outside of a specific set defined in the paper. In the case when the equilibrium points and period-two solution coexist, we give a precise description of the basins of attraction of all points. Our results give an affirmative answer to Conjecture 9.5.6 and the complete answer to Open Problem 9.5.7 of Kulenovic and Ladas, 2002. Copyright (c) 2007.
机构:
NAGOYA UNIV, FAC SCI, INST MOLEC BIOL, CHIKUSA KU, NAGOYA, AICHI 464, JAPANNAGOYA UNIV, FAC SCI, INST MOLEC BIOL, CHIKUSA KU, NAGOYA, AICHI 464, JAPAN
HIROTA, N
IMAE, Y
论文数: 0引用数: 0
h-index: 0
机构:
NAGOYA UNIV, FAC SCI, INST MOLEC BIOL, CHIKUSA KU, NAGOYA, AICHI 464, JAPANNAGOYA UNIV, FAC SCI, INST MOLEC BIOL, CHIKUSA KU, NAGOYA, AICHI 464, JAPAN
机构:
Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
King Abdulaziz Univ, Dept Math, Operator Theory & Applicat Res Grp, Jeddah 21589, Saudi ArabiaSerbian Acad Sci, Math Inst, Belgrade 11000, Serbia