Electrospinning Ru doped Co3O 4 porous nanofibers as promising bifunctional catalysts for oxygen evolution and oxygen reduction reactions

被引:17
|
作者
Hu, Deshuang [1 ,2 ]
Wang, Ruyue [1 ,2 ]
Du, Peng [1 ,2 ]
Li, Gang [3 ]
Wang, Yonggang [1 ,2 ]
Fan, Dongyu [1 ,2 ]
Pan, Xuchao [4 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[3] Beijing Jin Bei Nuo Technol Co Ltd, BDA, Room5002,Floor 5,Bldg 4,5 Disheng North St, Beijing 100176, Peoples R China
[4] Nanjing Univ Sci & Technol, Ministerial Key Lab ZNDY, Nanjing 210094, Peoples R China
关键词
Transition metal oxide; Doping; Nanofibers; Oxygen electrode; Electrocatalysis; MESOPOROUS CARBON; COBALT OXIDE; NANOSHEETS; ELECTROCATALYST; ARRAYS;
D O I
10.1016/j.ceramint.2021.11.202
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Enhancing the catalytic activity for oxygen evolution and oxygen reduction reactions is critical for rechargeable metal-air batteries. Herein, coral-like Ru-doped cobalt oxide nanofibers are prepared by electrospinning and subsequent heat treatment, which reduce the charge transfer resistance of cobalt oxide and optimize its active sites. Moreover, the large specific surface area and rich porosity of the one-dimensional nanomaterials prepared by the electrospinning method markedly improved the catalytic activity. Under the same catalyst load, Ru-doped cobalt oxide nanofibers have an overpotential of 300 mV, which is smaller than that of ruthenium oxide. In the oxygen reduction reaction, the positive half-wave potential of Ru-doped cobalt oxide nanofibers and Pt/C is the same (0.81 V). This work combines the strategies of doping and the advantages of electrospinning nanofibers to make a breakthrough in the catalytic activity of doped cobalt oxide nanofibers, and provides a new basis for the design of one-dimensional nanofiber bifunctional catalysts.
引用
收藏
页码:6549 / 6555
页数:7
相关论文
共 50 条
  • [41] Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution
    Ahmed, Mohammad Shamsuddin
    Choi, Byungchul
    Kim, Young-Bae
    SCIENTIFIC REPORTS, 2018, 8
  • [42] Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution
    Mohammad Shamsuddin Ahmed
    Byungchul Choi
    Young-Bae Kim
    Scientific Reports, 8
  • [43] Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions
    Cao, Xuecheng
    Zheng, Xiangjun
    Tian, Jinghua
    Jin, Chao
    Ke, Ke
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2016, 191 : 776 - 783
  • [44] Efficient nitrogen-doped porous carbon/carbon nanotube-supported CO3O4/Co catalysts for oxygen reduction reactions in alkaline media
    Sui, Jing
    Feng, Changqian
    Yan, Tao
    Wang, Jie
    Li, Zongzhao
    Feng, Jianguang
    Gao, Xiaolei
    Dong, Hongzhou
    Yu, Liyan
    Dong, Lifeng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 851
  • [45] B-Doped MnN4-G Nanosheets as Bifunctional Electrocatalysts for Both Oxygen Reduction and Oxygen Evolution Reactions
    Zhang, Wei
    Mao, Keke
    Zeng, Xiao Cheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (22): : 18711 - 18717
  • [46] N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations
    Li, Mingtao
    Zhang, Lipeng
    Xu, Quan
    Niu, Jianbing
    Xia, Zhenhai
    JOURNAL OF CATALYSIS, 2014, 314 : 66 - 72
  • [47] Cubic Mn2O3 nanoparticles on carbon as bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions
    Hazarika, Kumar Kashyap
    Goswami, Chiranjita
    Saikia, Himadri
    Borah, Biraj Jyoti
    Bharali, Pankaj
    MOLECULAR CATALYSIS, 2018, 451 : 153 - 160
  • [48] Ni-modified Co3O4 with competing electrochemical performance to noble metal catalysts in both oxygen reduction and oxygen evolution reactions
    Zhang, Yishuai
    Huang, Changfei
    Lu, Jinghao
    Cao, Haijie
    Zhang, Chuanhui
    Zhao, Xiu Song
    APPLIED SURFACE SCIENCE, 2024, 651
  • [49] Mn-doped Co3O4 nanoarrays as a promising electrocatalyst for oxygen evolution reaction
    Ma, Yubo
    Zha, Meng
    Dong, Yemin
    Li, Lei
    Hu, Guangzhi
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11):
  • [50] One-Pot Synthesis of Co/Co3O4/Co(OH)2/N-Doped Mesoporous Carbon for Both Oxygen Reduction Reactions and Oxygen Evolution Reactions
    Wang, Qing
    Hu, Wen H.
    Huang, Yong M.
    CHEMISTRYSELECT, 2017, 2 (10): : 3191 - 3199