The Evaluation of Fabrication Parameters Process Effect on the Formation of Poly(lactic-co-glycolic acid) (PLGA) Microspheres

被引:0
|
作者
Trinh-Quang Bao [1 ]
Lee, Byong-Taek [1 ]
机构
[1] Soonchunhyang Univ, Coll Med, Dept Biomed Engn & Mat, Cheonan 330090, Chungnam, South Korea
关键词
Porous PLGA microspheres; Drug delivery system; Heparin;
D O I
10.5012/bkcs.2011.32.5.1465
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, a poly(lactic-co-glycolic acid) (PLGA) microspheres was fabricated using emulsion solvent evaporation technique. During the procedure fabrication, some parameters process have effected on the formation of micro-carriers. The structure and morphology of micro-carriers were evaluated by SEM observation. Beside, heparin incorporated into microspheres was determined using toluidine blue method. Specifically, the effects of some parameters process such as ultrasonic levels, PLGA concentrations and freeze-dry times on the size, structure, porous formation and heparin entrapment of micro-carriers were studied carefully. We found that, the morphology and structure of carriers were influenced by the all above parameters. The diameter of the carriers varied from 20 to 400 pm depending on experimental conditions. At suitable freeze-dry time, the pores were automatically formation on surface of microspheres with a significantly in the numbers of pore. After heparin incorporated porous PLGA microspheres, it was suggested that the highly heparin incorporated into porous PLGA microspheres could enhance of angiogenesis for tissue regeneration easily.
引用
收藏
页码:1465 / 1470
页数:6
相关论文
共 50 条
  • [31] In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    BIOMATERIALS, 2008, 29 (24-25) : 3438 - 3443
  • [32] Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research
    Lu, Yue
    Cheng, Dongfang
    Niu, Baohua
    Wang, Xiuzhi
    Wu, Xiaxia
    Wang, Aiping
    PHARMACEUTICALS, 2023, 16 (03)
  • [33] Studies on the poly(lactic-co-glycolic) acid microspheres of cisplatin for lung-targeting
    Huo, DJ
    Deng, SH
    Li, LB
    Ji, JB
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2005, 289 (1-2) : 63 - 67
  • [34] Preparation and characteristics of interferon-alpha poly(lactic-co-glycolic acid) microspheres
    Yang, Fan
    Song, Feng-Lan
    Pan, Yu-Fang
    Wang, Zhao-Yang
    Yang, Yi-qun
    Zhao, Yao-Ming
    Liang, Shi-Zhong
    Zhang, Yong-Ming
    JOURNAL OF MICROENCAPSULATION, 2010, 27 (02) : 133 - 141
  • [35] A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microspheres
    Li, JK
    Wang, N
    Wu, XS
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1997, 214 : 295 - POLY
  • [36] Poly(lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering
    Kang, Sun-Woong
    Lee, Jae-Sun
    Park, Jung-Ho
    Kim, Byung-Soo
    TISSUE ENGINEERING, 2006, 12 (04): : 1091 - 1091
  • [37] Preparation and characterization of nickel chelating functionalized poly (lactic-co-glycolic acid) microspheres
    Rescignano, Nicoletta
    Perez, Aurora
    Kenny, Jose
    Hernandez, Rebeca
    Mijangos, Carmen
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 468 : 122 - 128
  • [38] Poly( lactic-co-glycolic acid) microspheres as an injectable scaffold for cartilage tissue engineering
    Kang, SW
    Jeon, O
    Kim, BS
    TISSUE ENGINEERING, 2005, 11 (3-4): : 438 - 447
  • [39] Investigation of DNA damage in cells exposed to poly (lactic-co-glycolic acid) microspheres
    Zivkovic, Lada
    Akar, Banu
    Roux, Brianna M.
    Potparevic, Biljana Spremo
    Bajic, Vladan
    Brey, Eric M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (01) : 284 - 291
  • [40] Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection
    Pandey, Chandra Mouli
    Sharma, Aditya
    Sumana, Gajjala
    Tiwari, Ida
    Malhotra, Bansi Dhar
    NANOSCALE, 2013, 5 (09) : 3800 - 3807