FLIPFLOP CORRELATION TRACKING WITH CONVOLUTION KERNELS NETWORKS

被引:0
|
作者
He, Hui [1 ]
Ma, Bo [1 ]
Qin, Luoyu [2 ]
机构
[1] Beijing Inst Technol, Beijing Lab Intelligent Informat Technol, Beijing, Peoples R China
[2] China Acad Space Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
correlation tracking; convolutional kernel networks; adaptive multiple features; VISUAL TRACKING; OBJECT TRACKING;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Correlation filter-based tracking methods have accomplished competitive performance on accuracy and robustness, but there is still a huge potential in choosing suitable features. Recently, Convolutional Kernel Networks (CKN), which provide a fast and simple procedure to approximate kernel descriptors, have been proposed and achieved state-of-the-art performance in many vision tasks. In this paper, we present an adaptive tracker which integrates the kernel correlation filters with multiple effective CKN descriptors. By adopting a FlipFlop scheme, the weights of different features can be adjusted in the process of tracking to get better performance. Extensive experimental results on the OTB-2013 tracking benchmark show that our approach performs favorably against some representative state-of-the-art tracking algorithms.
引用
收藏
页码:1937 / 1941
页数:5
相关论文
共 50 条
  • [21] ON MEASURABILITY OF CONVOLUTION AXIOM KERNELS
    BOCHVAR, DA
    NAUCHNO-TEKHNICHESKAYA INFORMATSIYA SERIYA 2-INFORMATSIONNYE PROTSESSY I SISTEMY, 1969, (03): : 3 - &
  • [22] Convolution Encoders for End-to-End Action Tracking With Space-Time Cubic Kernels
    Wang, Lin
    Wang, Xingfu
    Hawbani, Ammar
    Xiong, Yan
    Zhang, Xu
    IEEE ACCESS, 2020, 8 : 139023 - 139032
  • [23] Robust Visual Tracking Using Oriented Gradient Convolution Networks
    Xu, Qi
    Wang, Huabin
    Zhou, Jian
    Tao, Liang
    COMPUTER VISION, PT I, 2017, 771 : 320 - 330
  • [24] Robust online tracking via sparse gradient convolution networks?
    Xu Qi
    Wang Huabin
    Wu Qilin
    Tao Liang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 90
  • [25] Hierarchical Convolution Feature for Target Tracking with Kernel-Correlation Filtering
    Zhang, Jing
    Hu, Dong
    Zhang, Biqiu
    Pang, Yuwei
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 297 - 306
  • [26] Automatic Weld Tracking Based on Convolution Neural Network and Correlation Filter
    Yang Guowei
    Zhou Nan
    Yang Min
    Zhang Yongshuai
    Wang Yizhong
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (22):
  • [27] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [28] Object Tracking Algorithm Based on Correlation Filtering and Convolution Residuals Learning
    Yang Yaguang
    Shang Zhenhong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)
  • [29] Spatio-temporal convolution kernels
    Konstantin Knauf
    Daniel Memmert
    Ulf Brefeld
    Machine Learning, 2016, 102 : 247 - 273
  • [30] Spatio-temporal convolution kernels
    Knauf, Konstantin
    Memmert, Daniel
    Brefeld, Ulf
    MACHINE LEARNING, 2016, 102 (02) : 247 - 273