A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts

被引:177
|
作者
Hibino, Narutoshi [1 ]
Yi, Tai [1 ]
Duncan, Daniel R. [1 ]
Rathore, Animesh [1 ]
Dean, Ethan [1 ]
Naito, Yuji [1 ]
Dardik, Alan [1 ]
Kyriakides, Themis [1 ]
Madri, Joseph [1 ]
Pober, Jordan S. [1 ]
Shinoka, Toshiharu [1 ]
Breuer, Christopher K. [1 ]
机构
[1] Yale Univ, Sch Med, Interdept Program Vasc Biol & Therapeut, New Haven, CT USA
来源
FASEB JOURNAL | 2011年 / 25卷 / 12期
基金
美国国家卫生研究院;
关键词
monocytes; clodronate liposomes; ULTRASMALL SUPERPARAMAGNETIC PARTICLES; BONE-MARROW-CELLS; IN-VIVO; NEOINTIMAL FORMATION; PULMONARY-ARTERY; BLOOD-VESSELS; ANIMAL-MODEL; MOUSE MODEL; IRON-OXIDE; AUTOGRAFTS;
D O I
10.1096/fj.11-186585
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The primary graft-related complication during the first clinical trial evaluating the use of tissue-engineered vascular grafts (TEVGs) was stenosis. We investigated the role of macrophages in the formation of TEVG stenosis in a murine model. We analyzed the natural history of TEVG macrophage infiltration at critical time points and evaluated the role of cell seeding on neovessel formation. To assess the function of infiltrating macrophages, we implanted TEVGs into mice that had been macrophage depleted using clodronate liposomes. To confirm this, we used a CD11b-diphtheria toxin-receptor (DTR) transgenic mouse model. Monocytes infiltrated the scaffold within the first few days and initially transformed into M1 macrophages. As the scaffold degraded, the macrophage infiltrate disappeared. Cell seeding decreased the incidence of stenosis (32% seeded, 64% unseeded, P=0.024) and the degree of macrophage infiltration at 2 wk. Unseeded TEVGs demonstrated conversion from M1 to M2 phenotype, whereas seeded grafts did not. Clodronate and DTR inhibited macrophage infiltration and decreased stenosis but blocked formation of vascular neotissue, evidenced by the absence of endothelial and smooth muscle cells and collagen. These findings suggest that macrophage infiltration is critical for neovessel formation and provides a strategy for predicting, detecting, and inhibiting stenosis in TEVGs.-Hibino, N., Yi, T., Duncan, D. R., Rathore, A., Dean, E., Naito, Y., Dardik, A., Kyriakides, T., Madri, J., Pober, J. S., Shinoka, T., Breuer, C. K. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. FASEB J. 25, 4253-4263 (2011). www.fasebj.org
引用
收藏
页码:4253 / 4263
页数:11
相关论文
共 50 条
  • [41] Tissue-Engineered Vascular Grafts: Autologous Off-the-Shelf Vascular Access?
    Manson, Roberto J.
    Unger, Joshua M.
    Ali, Aamna
    Gage, Shawn M.
    Lawson, Jeffrey H.
    SEMINARS IN NEPHROLOGY, 2012, 32 (06) : 582 - 591
  • [42] Development of in vivo Tissue-Engineered Vascular Grafts With an Ultra Small Diameter of 0.6 mm (MicroBiotubes)
    Ishii, Daizo
    Enmi, Jun-Ichiro
    Lida, Hidehiro
    Satow, Tetsu
    Takahashi, Jun C.
    Kurisu, Kaoru
    Nakayama, Yasuhide
    CIRCULATION, 2015, 132
  • [43] Promoting Angiogenesis Using Immune Cells for Tissue-Engineered Vascular Grafts
    Wang, Li
    Wei, Xinbo
    Wang, Yuqing
    ANNALS OF BIOMEDICAL ENGINEERING, 2023, 51 (04) : 660 - 678
  • [44] Tissue-Engineered Vascular Grafts by Combining Cell Sheet and Electrospun Scaffold
    Lee, Sang Jin
    Ahn, Hyunhee
    Ju, Young Min
    Takahashi, Hironobu
    Okano, Teruo
    Jackson, John
    Yoo, James
    Atala, Anthony
    JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2016, 223 (04) : E64 - E64
  • [45] Tissue-Engineered Vascular Grafts by Combining Cell Sheet and Electrospun Scaffold
    Ahn, H.
    Ju, Y.
    Takahashi, H.
    Okano, T.
    Yoo, J. J.
    Atala, A.
    Lee, S.
    TISSUE ENGINEERING PART A, 2014, 20 : S94 - S94
  • [46] BIOACTIVE COATING FOR TISSUE-ENGINEERED SMALL-DIAMETER VASCULAR GRAFTS
    Surguchenko, V. A.
    Nemets, E. A.
    Belov, V. Yu
    Sevastianov, V., I
    VESTNIK TRANSPLANTOLOGII I ISKUSSTVENNYH ORGANOV, 2021, 23 (04): : 119 - 131
  • [47] A NEW GENERATION OF TISSUE-ENGINEERED VASCULAR GRAFTS: IMPLANTATION, CONSERVATION AND STERILIZATION
    Potart, Diane
    Gluais, Maude
    Da Silva, Nicolas
    Gaubert, Alexandra
    Rousseau, Benoit
    Hourques, Marie
    Sarrazin, Marie
    L'Heureux, Nicolas
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1034 - 1035
  • [48] Biological Materials for Tissue-Engineered Vascular Grafts: Overview of Recent Advancements
    Di Francesco, Dalila
    Pigliafreddo, Alexa
    Casarella, Simona
    Di Nunno, Luca
    Mantovani, Diego
    Boccafoschi, Francesca
    BIOMOLECULES, 2023, 13 (09)
  • [49] Late-term results of tissue-engineered vascular grafts in humans
    Hibino, Narutoshi
    McGillicuddy, Edward
    Matsumura, Goki
    Ichihara, Yuki
    Naito, Yuji
    Breuer, Christopher
    Shinoka, Toshiharu
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2010, 139 (02): : 431 - U233
  • [50] Automated Bioreactor System for the Cultivation of Autologous Tissue-Engineered Vascular Grafts
    Stanislawski, Nils
    Cholewa, Fabian
    Heyman, Henrik
    Kraus, Xenia
    Heene, Sebastian
    Witt, Martin
    Thoms, Stefanie
    Blume, Cornelia
    Blume, Holger
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 2257 - 2261