Construction of convex hull classifiers in high dimensions

被引:4
|
作者
Takahashi, Tetsuji [1 ]
Kudo, Mineichi [1 ]
Nakamura, Atsuyoshi [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Kita Ku, Sapporo, Hokkaido 0600814, Japan
基金
日本学术振兴会;
关键词
Pattern recognition; Convex hull; Classifier selection; SUPPORT VECTOR MACHINES;
D O I
10.1016/j.patrec.2011.06.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an algorithm to approximate each class region by a small number of approximated convex hulls and to use these for classification. The classifier is one of non-kernel maximum margin classifiers. It keeps the maximum margin in the original feature space, unlike support vector machines with a kernel. The construction of an exact convex hull requires an exponential time in dimension, so we find an approximate convex hull (a polyhedron) instead, which is constructed in linear time in dimension. We also propose a model selection procedure to control the number of faces of convex hulls for avoiding over-fitting, in which a fast procedure is adopted to calculate an upper-bound of the leave-one-out error. In comparison with support vector machines, the proposed approach is shown to be comparable in performance but more natural in the extension to multi-class problems. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2224 / 2230
页数:7
相关论文
共 50 条
  • [41] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, Jorge Kazuo
    Computers and Geosciences, 1997, 23 (07): : 725 - 738
  • [42] Efficient Learning of Minimax Risk Classifiers in High Dimensions
    Bondugula, Kartheek
    Mazuelas, Santiago
    Perez, Aritz
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 206 - 215
  • [43] SVM-Inspired Dynamic Safe Navigation Using Convex Hull Construction
    Linda, Ondrej
    Vollmer, Todd
    Manic, Milos
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 992 - +
  • [44] CONVEX_HULL - A Pascal program for determining the convex hull for planar sets
    Yamamoto, JK
    COMPUTERS & GEOSCIENCES, 1997, 23 (07) : 725 - 738
  • [46] A Convex Primal Formulation for Convex Hull Pricing
    Hua, Bowen
    Baldick, Ross
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (05) : 3814 - 3823
  • [47] Convolution and subordination in the convex hull of convex mappings
    Sokól, J
    APPLIED MATHEMATICS LETTERS, 2006, 19 (04) : 303 - 306
  • [48] Convex precoding for vector channels in high dimensions
    de Miguel, Rodrigo
    Muller, Ralf R.
    2008 INTERNATIONAL ZURICH SEMINAR ON COMMUNICATIONS, 2008, : 120 - 123
  • [49] On the volume of the convex hull of two convex bodies
    Ákos G. Horváth
    Zsolt Lángi
    Monatshefte für Mathematik, 2014, 174 : 219 - 229
  • [50] On the volume of the convex hull of two convex bodies
    Horvath, Akos G.
    Langi, Zsolt
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (02): : 219 - 229