Mid-Infrared Detectors based on Resonant Tunneling Diodes and Interband Cascade Structures

被引:2
|
作者
Pfenning, Andreas [1 ,2 ]
Knebl, Georg [1 ,2 ]
Schade, Anne [1 ,2 ]
Weih, Robert [1 ,2 ,4 ]
Bader, Andreas [1 ,2 ]
Meyer, Manuel [1 ,2 ]
Krueger, Sebastian [1 ,2 ]
Rothmayr, Florian [1 ,2 ,4 ]
Kistner, Caroline [4 ]
Koeth, Johannes [4 ]
Kamp, Martin [1 ,2 ]
Hartmann, Fabian [1 ,2 ]
Worschech, Lukas [1 ,2 ]
Hoefling, Sven [1 ,2 ,3 ]
机构
[1] Univ Wurzburg, Phys Inst, Tech Phys, D-97074 Wurzburg, Germany
[2] Univ Wurzburg, Rontgen Ctr Complex Mat Syst RCCM, D-97074 Wurzburg, Germany
[3] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[4] Nanoplus Nanosyst & Technol GmbH, Oberer Kirschberg 4, D-97218 Gerbrunn, Germany
关键词
Resonant Tunneling Diode; RTD; Interband Cascade Photodetector; Mid-IR; Antimonides; ALSB; GASB;
D O I
10.1117/12.2324501
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Molecule and gas sensing is a key technology that is applied in multiple environmental, industrial and medical fields. In particular optical detection technologies enable contactless, nondestructive, highly sensitive and fast detection of even smallest concentrations of trace gases and molecules. During the past years, an increasing demand for mid-infrared (MIR) light sources suitable for, e.g. molecule or gas sensing applications, has driven the development and optimization of novel MIR lasers and light sources, such as quantum cascade lasers (QCL) or interband cascade lasers (ICL). Despite the progress on MIR light sources, there is still a lack in appropriate MIR detectors. Here, we present and discuss two promising and novel GaSb/InAs-based detector concepts. First, resonant tunneling diode (RTD) photodetectors as an alternative to avalanche photodetectors. In RTDs, amplification of photogenerated minority charge carriers is based on modulation of a majority charge carrier resonant tunneling current. Second, interband cascade photodetectors (ICD), in which a cascading scheme allows for fast carrier extraction and a compensation of the diffusion length limitation.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [21] Optically-Pumped Mid-Infrared Interband Cascade Lasers
    Olafsen, Linda J.
    Rumman, Nazifa
    PROCEEDINGS OF THE 2020 IEEE TEXAS SYMPOSIUM ON WIRELESS AND MICROWAVE CIRCUITS AND SYSTEMS (WMCS), 2020,
  • [22] Development of a Mid-Infrared Interband Cascade Laser Methane Sensor
    Zheng Wenxue
    Zheng Chuantao
    Yao Dan
    Yang Shuo
    Dang Peipei
    Wang Yiding
    ACTA OPTICA SINICA, 2018, 38 (03)
  • [23] Mid-infrared metamorphic interband cascade photodetectors on GaAs substrates
    Tian, Zhao-Bing
    Krishna, Sanjay
    APPLIED PHYSICS LETTERS, 2015, 107 (21)
  • [24] Picosecond pulses from a mid-infrared interband cascade laser
    Hillbrand, Johannes
    Beiser, Maximilian
    Andrews, Aaron Maxwell
    Detz, Hermann
    Weih, Robert
    Schade, Anne
    Hoefling, Sven
    Strasser, Gottfried
    Schwarz, Benedikt
    OPTICA, 2019, 6 (10): : 1334 - 1337
  • [25] Mid-infrared type-II interband cascade lasers
    Yang, RQ
    Bradshaw, JL
    Bruno, JD
    Pham, JT
    Wortman, DE
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) : 559 - 568
  • [26] Mid-infrared interband cascade lasers at thermoelectric cooler temperatures
    Mansour, K.
    Qiu, Y.
    Hill, C. J.
    Soibel, A.
    Yang, R. Q.
    ELECTRONICS LETTERS, 2006, 42 (18) : 1034 - 1036
  • [27] Mid-infrared interband cascade lasers operating at ambient temperatures
    Vurgaftman, I.
    Canedy, C. L.
    Kim, C. S.
    Kim, M.
    Bewley, W. W.
    Lindle, J. R.
    Abell, J.
    Meyer, J. R.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [28] Mid-infrared tunable resonant cavity enhanced detectors
    Quack, Niels
    Blunier, Stefan
    Dual, Jurg
    Felder, Ferdinand
    Arnold, Martin
    Zogg, Hans
    SENSORS, 2008, 8 (09) : 5466 - 5478
  • [29] InAs-Based Mid-Infrared Interband Cascade Lasers Near 5.3 μm
    Tian, Zhaobing
    Jiang, Yuchao
    Li, Lu
    Hinkey, Robert T.
    Yin, Zuowei
    Yang, Rui Q.
    Mishima, Tetsuya D.
    Santos, Michael B.
    Johnson, Matthew B.
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2012, 48 (07) : 915 - 921