A Novel 3D Point Cloud Registration Algorithm Based on Hybrid Line Features

被引:0
|
作者
You, Danlei [1 ,2 ]
Zhang, Songyi [1 ,2 ]
Chen, Shitao [1 ,2 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect & Informat Engn, Xian 710049, Shaanxi, Peoples R China
[2] Dept Shunan Acad Artificial Intelligence, Ningbo 315000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud registration; Line extraction; Region growing; Hybrid line features; Vertical offset; SETS;
D O I
10.1109/ITSC48978.2021.9564447
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud registration, an approach to recovering the relative transformation of two point clouds, is an essential technique that can be achieved to achieve 3D reconstruction. However, most existing methods are mainly based on point-level features instead of geometric features. These features like lines and planes can be used to intuitively describe the environment and are more reliable than point-level features. Accordingly, this paper proposes an effective registration method based on hybrid line features. The proposed method is constructed in three steps. The first one is the extraction of line features. Inspired by the idea of seeded region growing in image processing, we extract the preliminary line features and then describe them with hybrid descriptors. In the second step, the correspondences of the lines are established using the descriptors. The 2D transformation is then calculated by the candidate correspondences, which registers the point clouds in 2D space to minimize the registration error. Finally, the vertical offset of the point clouds is obtained using the method which is based on the clustering method in the overlapped area, thus lifting the 2D transformation into the final 3D transformation. The experimental results tested on two different kinds of datasets illustrate that the proposed method is effective in achieving high-precision registration results with few line features.
引用
收藏
页码:2221 / 2228
页数:8
相关论文
共 50 条
  • [1] Optimization of the 3D Point Cloud Registration Algorithm Based on FPFH Features
    Sun, Ruiyang
    Zhang, Enzhong
    Mu, Deqiang
    Ji, Shijun
    Zhang, Ziqiang
    Liu, Hongwei
    Fu, Zheng
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [2] Research on registration algorithm based on neighborhood features for 3D point cloud
    Liu, Yongshan
    Gu, Xiaoying
    ICIC Express Letters, 2015, 9 (11): : 2957 - 2964
  • [3] 3D Point Cloud Registration Algorithm Based on Feature Matching
    Liu Jian
    Bai Di
    ACTA OPTICA SINICA, 2018, 38 (12)
  • [4] A 3D Point Cloud Registration Algorithm based on Feature Points
    Ren, Yi
    Zhou, Fucai
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INFORMATION SCIENCES, MACHINERY, MATERIALS AND ENERGY (ICISMME 2015), 2015, 126 : 803 - 807
  • [5] 3D point cloud registration algorithm with IVCCS
    Wang C.
    Li G.
    Liu X.
    Shi C.
    Qiu W.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2022, 51 (06):
  • [6] Improved Feature Point Algorithm for 3D Point Cloud Registration
    Kamencay, Patrik
    Sinko, Martin
    Hudec, Robert
    Benco, Miroslav
    Radil, Roman
    2019 42ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2019, : 517 - 520
  • [7] Evaluation of the ICP Algorithm in 3D Point Cloud Registration
    Li, Peng
    Wang, Ruisheng
    Wang, Yanxia
    Tao, Wuyong
    IEEE ACCESS, 2020, 8 : 68030 - 68048
  • [8] Hybrid3D: learning 3D hybrid features with point clouds and multi-view images for point cloud registration
    Bangbang YANG
    Zhaoyang HUANG
    Yijin LI
    Han ZHOU
    Hongsheng LI
    Guofeng ZHANG
    Hujun BAO
    ScienceChina(InformationSciences), 2023, 66 (07) : 77 - 93
  • [9] Hybrid3D: learning 3D hybrid features with point clouds and multi-view images for point cloud registration
    Yang, Bangbang
    Huang, Zhaoyang
    Li, Yijin
    Zhou, Han
    Li, Hongsheng
    Zhang, Guofeng
    Bao, Hujun
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (07)
  • [10] Local features of 3D point cloud registration based on Siamese network learning
    Sui, Yinling
    Qin, Zhiyuan
    Tong, Xiaochong
    Li, He
    Ding, Lu
    Lai, Guangling
    REMOTE SENSING LETTERS, 2021, 12 (08) : 730 - 738