Self-Supervised Learning for Point-Cloud Classification by a Multigrid Autoencoder

被引:1
|
作者
Zhai, Ruifeng [1 ]
Song, Junfeng [1 ,2 ]
Hou, Shuzhao [1 ]
Gao, Fengli [1 ]
Li, Xueyan [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point-cloud classification; deep learning; self-supervised learning;
D O I
10.3390/s22218115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It has become routine to directly process point clouds using a combination of shared multilayer perceptrons and aggregate functions. However, this practice has difficulty capturing the local information of point clouds, leading to information loss. Nevertheless, several recent works have proposed models that establish point-to-point relationships based on this procedure. However, to address the information loss, in this study we use self-supervised methods to enhance the network's understanding of point clouds. Our proposed multigrid autoencoder (MA) constrains the encoder part of the classification network so that it gains an understanding of the point cloud as it reconstructs it. With the help of self-supervised learning, we find the original network improves performance. We validate our model on PointNet++, and the experimental results show that our method improves overall classification accuracy by 2.0% and 4.7% with ModelNet40 and ScanObjectNN datasets, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] PointUR-RL: Unified Self-Supervised Learning Method Based on Variable Masked Autoencoder for Point Cloud Reconstruction and Representation Learning
    Li, Kang
    Zhu, Qiuquan
    Wang, Haoyu
    Wang, Shibo
    Tian, He
    Zhou, Ping
    Cao, Xin
    REMOTE SENSING, 2024, 16 (16)
  • [22] Point Contrastive Prediction with Semantic Clustering for Self-Supervised Learning on Point Cloud Videos
    Sheng, Xiaoxiao
    Shen, Zhiqiang
    Xiao, Gang
    Wang, Longguang
    Guo, Yulan
    Fan, Hehe
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 16469 - 16478
  • [23] Exploring Self-Supervised Learning for 3D Point Cloud Registration
    Yuan, Mingzhi
    Huang, Qiao
    Shen, Ao
    Huang, Xiaoshui
    Wang, Manning
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 25 - 31
  • [24] PointCMP: Contrastive Mask Prediction for Self-supervised Learning on Point Cloud Videos
    Shen, Zhiqiang
    Sheng, Xiaoxiao
    Wang, Longguang
    Guo, Yulan
    Liu, Qiong
    Zhou, Xi
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1212 - 1222
  • [25] Self-Supervised Point Cloud Representation Learning via Separating Mixed Shapes
    Sun, Chao
    Zheng, Zhedong
    Wang, Xiaohan
    Xu, Mingliang
    Yang, Yi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6207 - 6218
  • [26] Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation
    Wang, Bohua
    Tian, Zhiqiang
    Ye, Aixue
    Wen, Feng
    Du, Shaoyi
    Gao, Yue
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (09) : 6154 - 6166
  • [27] Cross-Architecture Relational Consistency for Point Cloud Self-Supervised Learning
    Li, Hongyu
    Zhang, Yifei
    Yang, Dongbao
    2023 IEEE 35TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2023, : 661 - 668
  • [28] Self-Supervised Point Cloud Understanding via Mask Transformer and Contrastive Learning
    Wang, Di
    Yang, Zhi-Xin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (01) : 184 - 191
  • [29] Classification of Ground-Based Cloud Images by Contrastive Self-Supervised Learning
    Lv, Qi
    Li, Qian
    Chen, Kai
    Lu, Yao
    Wang, Liwen
    REMOTE SENSING, 2022, 14 (22)
  • [30] Self-Supervised Learning for 3-D Point Clouds Based on a Masked Linear Autoencoder
    Yang, Hongxin
    Wang, Ruisheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 11