Self-Supervised Learning for Point-Cloud Classification by a Multigrid Autoencoder

被引:1
|
作者
Zhai, Ruifeng [1 ]
Song, Junfeng [1 ,2 ]
Hou, Shuzhao [1 ]
Gao, Fengli [1 ]
Li, Xueyan [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point-cloud classification; deep learning; self-supervised learning;
D O I
10.3390/s22218115
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
It has become routine to directly process point clouds using a combination of shared multilayer perceptrons and aggregate functions. However, this practice has difficulty capturing the local information of point clouds, leading to information loss. Nevertheless, several recent works have proposed models that establish point-to-point relationships based on this procedure. However, to address the information loss, in this study we use self-supervised methods to enhance the network's understanding of point clouds. Our proposed multigrid autoencoder (MA) constrains the encoder part of the classification network so that it gains an understanding of the point cloud as it reconstructs it. With the help of self-supervised learning, we find the original network improves performance. We validate our model on PointNet++, and the experimental results show that our method improves overall classification accuracy by 2.0% and 4.7% with ModelNet40 and ScanObjectNN datasets, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
    Yan, Siming
    Yang, Zhenpei
    Li, Haoxiang
    Song, Chen
    Guan, Li
    Kang, Hao
    Hua, Gang
    Huang, Qixing
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14484 - 14496
  • [2] SSL-Net: Point-Cloud Generation Network With Self-Supervised Learning
    Sun, Ran
    Gao, Yongbin
    Fang, Zhijun
    Wang, Anjie
    Zhong, Cengsi
    IEEE ACCESS, 2019, 7 : 82206 - 82217
  • [3] Regress Before Construct: Regress Autoencoder for Point Cloud Self-supervised Learning
    Liu, Yang
    Chen, Chen
    Wang, Can
    King, Xulin
    Liu, Mengyuan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1738 - 1749
  • [4] Self-Supervised Pretraining of 3D Features on any Point-Cloud
    Zhang, Zaiwei
    Girdhar, Rohit
    Joulin, Armand
    Misra, Ishan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10232 - 10243
  • [5] Self-supervised learning for point cloud data: A survey
    Zeng, Changyu
    Wang, Wei
    Nguyen, Anh
    Xiao, Jimin
    Yue, Yutao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [6] Masked Autoencoders for Point Cloud Self-supervised Learning
    Pang, Yatian
    Wang, Wenxiao
    Tay, Francis E. H.
    Liu, Wei
    Tian, Yonghong
    Yuan, Li
    COMPUTER VISION - ECCV 2022, PT II, 2022, 13662 : 604 - 621
  • [7] Self-Supervised Learning Malware Traffic Classification Based on Masked Autoencoder
    Xu, Ke
    Zhang, Xixi
    Wang, Yu
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Sari, Hikmet
    Gui, Guan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17330 - 17340
  • [8] Point cloud self-supervised learning for machining feature recognition
    Zhang, Hang
    Wang, Wenhu
    Zhang, Shusheng
    Wang, Zhen
    Zhang, Yajun
    Zhou, Jingtao
    Huang, Bo
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 77 : 78 - 95
  • [9] Context Autoencoder for Self-supervised Representation Learning
    Xiaokang Chen
    Mingyu Ding
    Xiaodi Wang
    Ying Xin
    Shentong Mo
    Yunhao Wang
    Shumin Han
    Ping Luo
    Gang Zeng
    Jingdong Wang
    International Journal of Computer Vision, 2024, 132 : 208 - 223
  • [10] Context Autoencoder for Self-supervised Representation Learning
    Chen, Xiaokang
    Ding, Mingyu
    Wang, Xiaodi
    Xin, Ying
    Mo, Shentong
    Wang, Yunhao
    Han, Shumin
    Luo, Ping
    Zeng, Gang
    Wang, Jingdong
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 132 (1) : 208 - 223