Characteristics of temporal variability of urban ecosystem-atmosphere CO2, CH4, and N2O fluxes

被引:6
|
作者
Bezyk, Yaroslav [1 ]
Dorodnikov, Maxim [2 ]
Grzelka, Agnieszka [1 ]
Nych, Alicja [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Environm Engn, Unit Engn & Protect Atmosphere, Wroclaw, Poland
[2] Georg August Univ Goettingen, Dept Soil Sci Temperate Ecosyst, Gottingen, Germany
关键词
SEASONAL VARIABILITY; NITROUS-OXIDE; DELTA-C-13;
D O I
10.1051/e3sconf/20184400013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Understanding the origin and mechanisms controlling GHGs (CO2, CH4 and N2O) emission spatially and temporally is critical for evaluating future climate changes. Whether the controls on GHG dynamics in urban ecosystem are similar to those in natural ecosystems are not fully understood. In the current study, the aboveground (cover vegetation + soil) and soil (including autotrophic and heterotrophic) CO2, N2O and CH4 fluxes and respective carbon stable isotopic composition (delta C-13) of respired CO2 at natural abundance level were simultaneously measured from a reestablished grassland in the urban area of central Germany. The static chamber system (combination of transparent and opaque modes) was applied to assess the effects of intensive vegetation growth during two weeks of April 2017. The values of CO2 fluxes obtained with both transparent and opaque chambers differed significantly due to the combined effects of the incoming photosynthetically active radiation (PAR) and temperature on vegetation and belowground processes. The average value of measured CO2 flux with opaque chambers was 9.14 +/- 1.9 (mg m(-2) min(-1)) vs. 2.37 +/- 0.9 (mg m(-2) min(-1)) with transparent chambers for the re-established grassland. In contrast, soil CH4, as well as N2O fluxes were not different significantly for both opaque-transparent chamber measurements. Current magnitude provides the pattern of the urban ecosystem source/sinks potential during ambient light conditions.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in eastern Amazonia
    Verchot, Louis V.
    Brienza, Silvio, Jr.
    de Oliveira, Valdirene Costa
    Mutegi, James K.
    Cattanio, J. Henrique
    Davidson, Eric A.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2008, 126 (1-2) : 113 - 121
  • [22] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm J.
    Saarnio S.
    Nykänen H.
    Silvola J.
    Martikainen P.J.
    Biogeochemistry, 1999, 44 (2) : 163 - 186
  • [23] Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands
    Alm, J
    Saarnio, S
    Nykänen, H
    Silvola, J
    Martikainen, PJ
    BIOGEOCHEMISTRY, 1999, 44 (02) : 163 - 186
  • [24] Fluxes of CO2, CH4 and N2O from drained coniferous forests on organic soils
    Von Arnold, K
    Weslien, P
    Nilsson, M
    Svensson, BH
    Klemedtsson, L
    FOREST ECOLOGY AND MANAGEMENT, 2005, 210 (1-3) : 239 - 254
  • [25] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    J. Drewer
    M. Anderson
    P.E. Levy
    B. Scholtes
    C. Helfter
    J. Parker
    R.M. Rees
    U.M. Skiba
    Plant and Soil, 2017, 411 : 193 - 208
  • [26] Liming practice in temperate forest ecosystems and the effects on CO2, N2O and CH4 fluxes
    Borken, W
    Brumme, R
    SOIL USE AND MANAGEMENT, 1997, 13 (04) : 251 - 257
  • [27] Effects of grazing on CO2, CH4, and N2O fluxes in three temperate steppe ecosystems
    Shi, Huiqiu
    Hou, Longyu
    Yang, Liuyi
    Wu, Dongxiu
    Zhang, Lihua
    Li, Linghao
    ECOSPHERE, 2017, 8 (04):
  • [28] Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest soil
    Hawthorne, Iain
    Johnson, Mark S.
    Jassal, Rachhpal S.
    Black, T. Andrew
    Grant, Nicholas J.
    Smukler, Sean M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 192 : 203 - 214
  • [29] Winter greenhouse gas fluxes (CO2, CH4 and N2O) from a subalpine grassland
    Merbold, L.
    Steinlin, C.
    Hagedorn, F.
    BIOGEOSCIENCES, 2013, 10 (05) : 3185 - 3203
  • [30] The impact of ploughing intensively managed temperate grasslands on N2O, CH4 and CO2 fluxes
    Drewer, J.
    Anderson, M.
    Levy, P. E.
    Scholtes, B.
    Helfter, C.
    Parker, J.
    Rees, R. M.
    Skiba, U. M.
    PLANT AND SOIL, 2017, 411 (1-2) : 193 - 208