Stability estimates for the local Radon transform

被引:1
|
作者
Andersson, Joel [1 ]
Boman, Jan [1 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
radon transform; local injectivity; stability estimates; INVERSION-FORMULA;
D O I
10.1088/1361-6420/aaa99c
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem for the 2-dimensional local Radon transform R[f], where f is supported in y >= x(2) and R[f](xi, eta) = integral f (x, xi x + eta) dx is defined near (xi, eta) = (0, 0). We give logarithmic estimates of f in terms of R[f] for functions f that satisfy an a priori bound. For a certain class of smooth, positive weight functions m we give similar estimates for the weighted Radon transform R-m vertical bar f](xi, eta) = integral f (x, xi x + eta) m(xi, eta, x) dx.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Stability estimates for the regularized inversion of the truncated Hilbert transform
    Alaifari, Rima
    Defrise, Michel
    Katsevich, Alexander
    INVERSE PROBLEMS, 2016, 32 (06)
  • [32] Transversal multilinear Radon-like transforms: local and global estimates
    Bennett, Jonathan
    Bez, Neal
    Gutierrez, Susana
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) : 765 - 788
  • [33] Stability estimates for reconstruction from the Fourier transform on the ball
    Isaev, Mikhail
    Novikov, Roman G.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2021, 29 (03): : 421 - 433
  • [34] A finger-vein extraction algorithm based on local Radon transform
    Zhang, Jianfeng
    Lu, Zhiying
    Li, Min
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 1408 - 1412
  • [35] End point estimates for Radon transform of radial functions on non-Euclidean spaces
    Ashisha Kumar
    Swagato K. Ray
    Monatshefte für Mathematik, 2014, 174 : 41 - 75
  • [36] End point estimates for Radon transform of radial functions on non-Euclidean spaces
    Kumar, Ashisha
    Ray, Swagato K.
    MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01): : 41 - 75
  • [37] Inversion of the seismic parabolic Radon transform and the seismic hyperbolic Radon transform
    Moon, Sunghwan
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (02) : 317 - 327
  • [38] Annular Radon transform and axicon transform
    Kotlyar, V. V.
    Kovalev, A. A.
    OPTICAL ENGINEERING, 2006, 45 (07)
  • [39] RADON EXPOSURE ESTIMATES
    STUART, BO
    TOXICOLOGY LETTERS, 1989, 49 (2-3) : 341 - 348
  • [40] RADON RISK ESTIMATES
    CHIU, N
    BARRY, T
    PUSKIN, J
    NELSON, N
    SCIENCE, 1994, 264 (5163) : 1239 - 1240