A Shift Splitting Iteration Method for Generalized Absolute Value Equations

被引:5
|
作者
Cui-Xia Li [1 ]
Shi-Liang Wu [1 ]
机构
[1] Yunnan Normal Univ, Sch Math, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Absolute Value Equation; Shift Splitting Method; Convergence; NEWTON METHOD; MATRIX; CONVERGENCE; SYSTEMS;
D O I
10.1515/cmam-2020-0004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the shift splitting technique, a shift splitting (SS) iteration method is presented to solve the generalized absolute value equations. Convergence conditions of the SS method are discussed in detail when the involved matrices are some special matrices. Finally, numerical experiments show the effectiveness of the proposed method.
引用
收藏
页码:863 / 872
页数:10
相关论文
共 50 条
  • [21] A Modified Generalized Newton Method for Absolute Value Equations
    Cui-Xia Li
    Journal of Optimization Theory and Applications, 2016, 170 : 1055 - 1059
  • [22] On Generalized Traub’s Method for Absolute Value Equations
    Farhad Khaksar Haghani
    Journal of Optimization Theory and Applications, 2015, 166 : 619 - 625
  • [23] An improved generalized Newton method for absolute value equations
    Feng, Jingmei
    Liu, Sanyang
    SPRINGERPLUS, 2016, 5
  • [24] On Generalized Traub's Method for Absolute Value Equations
    Haghani, Farhad Khaksar
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (02) : 619 - 625
  • [25] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [26] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [27] An improved two-sweep iteration method for absolute value equations
    Hongbing Zhang
    Yanjun Zhang
    Yajing Li
    Hongtao Fan
    Computational and Applied Mathematics, 2022, 41
  • [28] An improved two-sweep iteration method for absolute value equations
    Zhang, Hongbing
    Zhang, Yanjun
    Li, Yajing
    Fan, Hongtao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [29] The Picard-HSS-SOR iteration method for absolute value equations
    Lin Zheng
    Journal of Inequalities and Applications, 2020
  • [30] The Picard-HSS-SOR iteration method for absolute value equations
    Zheng, Lin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)