RETRACTED: Coupled fixed point theorems without continuity and mixed monotone property (Retracted Article)

被引:0
|
作者
Vats, Ramesh Kumar [1 ]
Sihag, Vizender [1 ]
Cho, Yeol Je [2 ]
机构
[1] Natl Inst Technol, Dept Math, Hamirpur 177005, Himachal Prades, India
[2] Gyeongsang Natl Univ, Chinju, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2013年 / 2013卷 / 01期
基金
新加坡国家研究基金会;
关键词
partially ordered set; G-metric space; coupled fixed point; mixed monotone property; ORDERED METRIC-SPACES; NONLINEAR CONTRACTIONS; COINCIDENCE; MAPPINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we generalize some coupled fixed point theorems for the mixed monotone operators F : X x X -> X obtained in (Choudhury and Maity in Math. Comput. Model., 2011, doi:10.1016/j.mcm.2011.01.036) by significantly weakening the contractive condition involved and by replacing the mixed monotone property with another property which is automatically satisfied in the case of a totally ordered space. The proof follows a different and more natural new technique recently introduced by Berinde (Nonlinear Anal. 74:7347-7355, 2011). The example demonstrates that our main result is an actual improvement over the results which are generalized.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Some fixed point theorems without continuity
    Rashwan, R.A.
    Saddeek, A.M.
    [J]. Advances in Modelling and Analysis A: General Mathematical and Computer Tools, 1994, 21 (1-3): : 11 - 24
  • [22] Discussion of coupled and tripled coincidence point theorems for φ-contractive mappings without the mixed g-monotone property
    Karapinar, Erdal
    Roldan, Antonio
    Shahzad, Naseer
    Sintunavarat, Wutiphol
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [23] Discussion of coupled and tripled coincidence point theorems for φ-contractive mappings without the mixed g-monotone property
    Erdal Karapınar
    Antonio Roldán
    Naseer Shahzad
    Wutiphol Sintunavarat
    [J]. Fixed Point Theory and Applications, 2014
  • [24] Some fixed point theorems via partial order relations without the monotone property
    Saksirikun, Warut
    Petrot, Narin
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (03) : 389 - 394
  • [25] Coupled Fixed Point Theorems Via Mixed Monotone Property in Ab-metric Spaces & Applications to Integral Equations
    Ravibabu, K.
    Kishore, G. N., V
    Rao, Ch Srinivasa
    Naidu, Ch Raghavendra
    [J]. JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2022, 15 (03): : 343 - 356
  • [26] Fixed Point Theorems of Mixed Monotone Operators with Applications
    谢胜利
    张庆政
    [J]. Chinese Quarterly Journal of Mathematics, 1997, (03) : 24 - 30
  • [27] Fixed point theorems for a class of mixed monotone operators
    Liang, ZD
    Zhang, LL
    Li, SJ
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (03): : 529 - 542
  • [28] Coupled fixed point theorems in quasimetric spaces without mixed monotonicity
    Petrusel, Adrian
    Petrusel, Gabriela
    Yao, Jen-Chih
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (02) : 185 - 192
  • [29] Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces
    Shatanawi, Wasfi
    Samet, Bessem
    Abbas, Mujahid
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 680 - 687
  • [30] On fixed point theorems of mixed monotone operators and applications
    Zhang, Zhitao
    Wang, Kelei
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) : 3279 - 3284