Vortex-state oscillations in soft magnetic cylindrical dots

被引:111
|
作者
Guslienko, KY
Scholz, W
Chantrell, RW
Novosad, V
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Seagate Res, Pittsburgh, PA 15222 USA
来源
PHYSICAL REVIEW B | 2005年 / 71卷 / 14期
关键词
D O I
10.1103/PhysRevB.71.144407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have studied magnetic vortex oscillations in soft submicron cylindrical dots with variable thickness and diameter by an analytical approach and micromagnetic simulations. We have considered two kinds of modes of the vortex magnetization oscillations: (1) low-frequency translation mode, corresponding to the movement of the vortex as a whole near its equilibrium position and (2) high-frequency vortex modes, which correspond to radially symmetric oscillations of the vortex magnetization, mainly outside the vortex core. The vortex translational eigenmode was calculated numerically in frequency and time domains for different dot aspect ratios. To describe the discrete set of vortex high-frequency modes we applied the linearized equation of motion of dynamic magnetization over the vortex ground state. We considered only radially symmetric magnetization oscillations modes. The eigenfrequencies of both kinds of the excitation modes are determined by magnetostatic interactions. They are proportional to the thickness/diameter ratio and lie in the GHz range for typical dot sizes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Soft spin modes and magnetic transitions in trilayered nanodisks in the vortex state
    Montoncello, F.
    Giovannini, L.
    Nizzoli, F.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [42] Commensurability and chaos in magnetic vortex oscillations
    Petit-Watelot, Sebastien
    Kim, Joo-Von
    Ruotolo, Antonio
    Otxoa, Ruben M.
    Bouzehouane, Karim
    Grollier, Julie
    Vansteenkiste, Arne
    Van de Wiele, Ben
    Cros, Vincent
    Devolder, Thibaut
    [J]. NATURE PHYSICS, 2012, 8 (09) : 682 - 687
  • [43] Commensurability and chaos in magnetic vortex oscillations
    Sebastien Petit-Watelot
    Joo-Von Kim
    Antonio Ruotolo
    Ruben M. Otxoa
    Karim Bouzehouane
    Julie Grollier
    Arne Vansteenkiste
    Ben Van de Wiele
    Vincent Cros
    Thibaut Devolder
    [J]. Nature Physics, 2012, 8 (9) : 682 - 687
  • [44] Magnetic Resonance Force Spectroscopy of Magnetic Vortex Oscillations
    Mironov, V. L.
    Skorokhodov, E. V.
    Tatarskiy, D. A.
    Pashen'kin, I. Yu.
    [J]. TECHNICAL PHYSICS, 2020, 65 (11) : 1740 - 1743
  • [45] Spin-wave excitation modes in thick vortex-state circular ferromagnetic nanodots
    Verba, R. V.
    Hierro-Rodriguez, A.
    Navas, D.
    Ding, J.
    Liu, X. M.
    Adeyeye, A. O.
    Guslienko, K. Y.
    Kakazei, G. N.
    [J]. PHYSICAL REVIEW B, 2016, 93 (21)
  • [46] Magnetic Resonance Force Spectroscopy of Magnetic Vortex Oscillations
    V. L. Mironov
    E. V. Skorokhodov
    D. A. Tatarskiy
    I. Yu. Pashen’kin
    [J]. Technical Physics, 2020, 65 : 1740 - 1743
  • [47] Magnetic nanostructure fabrication by soft lithography and vortex-single domain transition in Co dots
    Li, SP
    Natali, M
    Lebib, A
    Pépin, A
    Chen, Y
    Xu, YB
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 241 (2-3) : 447 - 452
  • [48] THEORY FOR VORTEX-EXCITED OSCILLATIONS OF FLEXIBLE CYLINDRICAL STRUCTURES
    SKOP, RA
    GRIFFIN, OM
    [J]. JOURNAL OF SOUND AND VIBRATION, 1975, 41 (03) : 263 - 274
  • [49] Precise probing spin wave mode frequencies in the vortex state of circular magnetic dots
    Awad, A. A.
    Guslienko, K. Y.
    Sierra, J. F.
    Kakazei, G. N.
    Metlushko, V.
    Aliev, F. G.
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (01)
  • [50] RADIAL OSCILLATIONS OF CYLINDRICAL MAGNETIC DOMAINS - BUBBLES
    KACZER, J
    TOMAS, I
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1972, 10 (02): : 619 - &