Urban Terrain Multiple Target Tracking Using Probability Hypothesis Density Particle Filtering

被引:0
|
作者
Zhou, Meng [1 ]
Chakraborty, Bhavana [1 ]
Zhang, Jun Jason [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85004 USA
[2] Univ Denver, Dept Elect & Comp Engn, Denver, CO USA
关键词
Multiple target tracking; probability hypothesis density; particle filtering; urban terrain;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-model particle probability hypothesis density filer (PPHDF) algorithm for multiple target tracking in urban terrain is investigated in this paper. The multi-model PPHDF is based on target state-space modeling of urban scenarios, random finite set theory, multiple model estimation theory, and sequential Monte Carlo implementations. Our proposed algorithm can instantaneously and efficiently estimate both the number of targets and their corresponding states without conventional measurement-to-track associations. Numerical simulation results demonstrate that the multi-model PPHDF can achieve good tracking performance with tractable computational complexity in the test bench urban tracking scenario with complex multipath radar return patterns.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [21] A Sector-Matching Probability Hypothesis Density Filter for Radar Multiple Target Tracking
    Yang, Jialin
    Jiang, Defu
    Tao, Jin
    Gao, Yiyue
    Lu, Xingchen
    Han, Yan
    Liu, Ming
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [22] Constrained Multiple Model Probability Hypothesis Density Filter for Maneuvering Ground Target Tracking
    Yang, Feng
    Shi, Xi
    Liang, Yan
    Wang, Yongqi
    Pan, Quan
    2013 CHINESE AUTOMATION CONGRESS (CAC), 2013, : 759 - 764
  • [23] Improved multi-target tracking using probability hypothesis density smoothing
    Nandakumaran, N.
    Punithakumar, K.
    Kirubarajan, T.
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2007, 2007, 6699
  • [24] Multi-target probability hypothesis density filtering with unknown probability of detection
    Wu, X.-H. (wuxinhui009@163.com), 1600, Northeast University (29):
  • [25] Estimation and Prediction of Multiple Flying Balls Using Probability Hypothesis Density Filtering
    Birbach, Oliver
    Frese, Udo
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 3426 - 3433
  • [26] Multiple target tracking with constrained motion using particle filtering methods
    Kyriakides, I
    Morrell, D
    Papandreou-Suppappola, A
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 85 - 88
  • [27] Multiple Target Tracking Using Particle Filtering and Adaptive Waveform Design
    Kyriakides, I.
    Trueblood, T.
    Morrell, Darryl
    Papandreou-Suppappola, A.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1188 - +
  • [28] Tracking multiple objects using probability hypothesis density filter and color measurements
    Pham, Nam Trung
    Huang, Weimin
    Ong, S. H.
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 1511 - +
  • [29] Dual Detection-Guided Newborn Target Intensity Based on Probability Hypothesis Density for Multiple Target Tracking
    Gao, Li
    Ma, Yongjie
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (10): : 5095 - 5111
  • [30] Evolutionary Resampling for Multi-Target Tracking using Probability Hypothesis Density Filter
    Halimeh, Mhd Modar
    Brendel, Andreas
    Kellermann, Walter
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 642 - 646