Urban Terrain Multiple Target Tracking Using Probability Hypothesis Density Particle Filtering

被引:0
|
作者
Zhou, Meng [1 ]
Chakraborty, Bhavana [1 ]
Zhang, Jun Jason [2 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85004 USA
[2] Univ Denver, Dept Elect & Comp Engn, Denver, CO USA
关键词
Multiple target tracking; probability hypothesis density; particle filtering; urban terrain;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A multi-model particle probability hypothesis density filer (PPHDF) algorithm for multiple target tracking in urban terrain is investigated in this paper. The multi-model PPHDF is based on target state-space modeling of urban scenarios, random finite set theory, multiple model estimation theory, and sequential Monte Carlo implementations. Our proposed algorithm can instantaneously and efficiently estimate both the number of targets and their corresponding states without conventional measurement-to-track associations. Numerical simulation results demonstrate that the multi-model PPHDF can achieve good tracking performance with tractable computational complexity in the test bench urban tracking scenario with complex multipath radar return patterns.
引用
收藏
页码:331 / 335
页数:5
相关论文
共 50 条
  • [1] Waveform-agile Multiple Target Tracking Using Probability Hypothesis Density Filtering
    O'Donnell, Brian
    Zhang, Jun Jason
    Papandreou-Suppappola, Antonia
    Rangaswamy, Muralidhar
    2012 IEEE 7TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2012, : 245 - 248
  • [2] MULTIPLE TARGET TRACKING USING THE EXTENDED KALMAN PARTICLE PROBABILITY HYPOTHESIS DENSITY FILTER
    Melzi, M.
    Ouldali, A.
    Messaoudi, Z.
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1821 - 1825
  • [3] Modified Gaussian Mixture Probability Hypothesis Density Filtering using Clutter Density Estimation for Multiple Target Tracking
    Sun, Lifan
    Xue, Wenhui
    Gao, Dan
    JOURNAL OF AEROSPACE TECHNOLOGY AND MANAGEMENT, 2024, 16
  • [4] Multi-target particle filtering for the probability hypothesis density
    Sidenbladh, H
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 800 - 806
  • [5] A particle cardinalized probability hypothesis density filtering algorithm for bearings-only multi-target tracking
    Zhang J.-G.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (06): : 1319 - 1325
  • [6] PROBABILITY HYPOTHESIS DENSITY FILTERING WITH MULTIPATH-TO-MEASUREMENT ASSOCIATION FOR URBAN TRACKING
    Zhou, Meng
    Zhang, Jun Jason
    Papandreou-Suppappola, Antonia
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3273 - 3276
  • [7] Target tracking using multiple auxiliary particle filtering
    Ubeda-Medina, Luis
    Garcia-Fernandez, Angel F.
    Grajal, Jesus
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 9 - 16
  • [8] A kernel particle probability hypothesis density filter for multi-target tracking
    Zhuang, Zesen
    Zhang, Jianqiu
    Yin, Jianjun
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2009, 30 (07): : 1264 - 1270
  • [9] Target tracking by multiple particle filtering
    Bugallo, Monica F.
    Lu, Ting
    Djuric, Petar M.
    2007 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2007, : 1882 - 1888
  • [10] Particle probability hypothesis density filtering for multitarget visual tracking with robust state extraction
    Wu, Jingjing
    Hu, Shiqiang
    Wang, Yang
    OPTICAL ENGINEERING, 2011, 50 (09)