Relaxation method for unsteady convection-diffusion equations

被引:6
|
作者
Shen, Wensheng [1 ]
Zhang, Changjiang [2 ]
Zhang, Jun [2 ]
机构
[1] SUNY Coll Brockport, Dept Computat Sci, Brockport, NY 14420 USA
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
关键词
Relaxation method; Convection-diffusion equation; WEND scheme; Implicit-explicit Runge-Kutta; Hyperbolic conservation laws; HYPERBOLIC CONSERVATION-LAWS; ADI METHOD; SCHEMES;
D O I
10.1016/j.camwa.2010.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and implement a relaxation method for solving unsteady linear and nonlinear convection-diffusion equations with continuous or discontinuity-like initial conditions. The method transforms a convection-diffusion equation into a relaxation system, which contains a stiff source term. The resulting relaxation system is then solved by a third-order accurate implicit-explicit (IMEX) Runge-Kutta method in time and a fifth-order finite difference WENO scheme in space. Numerical results show that the method can be used to effectively solve convection-diffusion equations with both smooth structures and discontinuities. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:908 / 920
页数:13
相关论文
共 50 条
  • [21] A Hermite Finite Element Method for Convection-diffusion Equations
    Ruas, V.
    Trales, P.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2213 - 2216
  • [22] An operator splitting method for nonlinear convection-diffusion equations
    Karlsen, KH
    Risebro, NH
    NUMERISCHE MATHEMATIK, 1997, 77 (03) : 365 - 382
  • [23] APPROXIMATE CONVECTION-DIFFUSION EQUATIONS
    Perumal, Muthiah
    Raju, Kittur G. Ranga
    JOURNAL OF HYDROLOGIC ENGINEERING, 1999, 4 (02) : 160 - 164
  • [24] Implicit characteristic Galerkin method for convection-diffusion equations
    Li, XK
    Wu, WH
    Zienkiewicz, OC
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (10) : 1689 - 1708
  • [25] An operator splitting method for nonlinear convection-diffusion equations
    Kenneth Hvistendahl Karlsen
    Nils Henrik Risebro
    Numerische Mathematik, 1997, 77 : 365 - 382
  • [26] DISCONTINUOUS GALERKIN METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS
    Xu, Qinwu
    Hesthaven, Jan S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) : 405 - 423
  • [27] Soution of Convection-Diffusion Equations
    Peng, Yamian
    Liu, Chunfeng
    Shi, Linan
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT II, 2013, 392 : 546 - 555
  • [28] Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method
    Fu, Zhuo-Jia
    Tang, Zhuo-Chao
    Zhao, Hai-Tao
    Li, Po-Wei
    Rabczuk, Timon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06):
  • [29] Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method
    Zhuo-Jia Fu
    Zhuo-Chao Tang
    Hai-Tao Zhao
    Po-Wei Li
    Timon Rabczuk
    The European Physical Journal Plus, 134
  • [30] A mass-conservative higher-order ADI method for solving unsteady convection-diffusion equations
    Wongsaijai, Ben
    Sukantamala, Nattakorn
    Poochinapan, Kanyuta
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)