Relaxation method for unsteady convection-diffusion equations

被引:6
|
作者
Shen, Wensheng [1 ]
Zhang, Changjiang [2 ]
Zhang, Jun [2 ]
机构
[1] SUNY Coll Brockport, Dept Computat Sci, Brockport, NY 14420 USA
[2] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
关键词
Relaxation method; Convection-diffusion equation; WEND scheme; Implicit-explicit Runge-Kutta; Hyperbolic conservation laws; HYPERBOLIC CONSERVATION-LAWS; ADI METHOD; SCHEMES;
D O I
10.1016/j.camwa.2010.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose and implement a relaxation method for solving unsteady linear and nonlinear convection-diffusion equations with continuous or discontinuity-like initial conditions. The method transforms a convection-diffusion equation into a relaxation system, which contains a stiff source term. The resulting relaxation system is then solved by a third-order accurate implicit-explicit (IMEX) Runge-Kutta method in time and a fifth-order finite difference WENO scheme in space. Numerical results show that the method can be used to effectively solve convection-diffusion equations with both smooth structures and discontinuities. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:908 / 920
页数:13
相关论文
共 50 条
  • [1] A CCD-ADI method for unsteady convection-diffusion equations
    Sun, Hai-Wei
    Li, Leonard Z.
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (03) : 790 - 797
  • [2] A half boundary method for two dimensional unsteady convection-diffusion equations
    Zhao, Yuanyuan
    Huang, Mei
    Ouyang, Xiaoping
    Luo, Jun
    Shen, Yongqing
    Bao, Fang
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 135 : 322 - 336
  • [3] An integral equation approach to the unsteady convection-diffusion equations
    Wei, Tao
    Xu, Mingtian
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 55 - 64
  • [4] A high-order Pade ADI method for unsteady convection-diffusion equations
    You, DH
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (01) : 1 - 11
  • [5] A high-order Padé ADI method for unsteady convection-diffusion equations
    Center for Turbulence Research, Stanford University, 488 Escondido Mall, Building 500, Stanford, CA 94305, United States
    J. Comput. Phys., 1 (1-11):
  • [6] An Explicit Method for Convection-Diffusion Equations
    Ruas, Vitoriano
    Brasil, Antonio, Jr.
    Trales, Paulo
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2009, 26 (01) : 65 - 91
  • [7] An explicit method for convection-diffusion equations
    Vitoriano Ruas
    Antonio Brasil
    Paulo Trales
    Japan Journal of Industrial and Applied Mathematics, 2009, 26
  • [8] ON LOCAL RELAXATION METHODS AND THEIR APPLICATION TO CONVECTION-DIFFUSION EQUATIONS
    BOTTA, EFF
    VELDMAN, AEP
    JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 48 (01) : 127 - 149
  • [9] A decomposition method for solving unsteady convection-diffusion problems
    Momani, Shaher
    TURKISH JOURNAL OF MATHEMATICS, 2008, 32 (01) : 51 - 60
  • [10] A rational high-order compact ADI method for unsteady convection-diffusion equations
    Tian, Zhen F.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (03) : 649 - 662