Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses

被引:5
|
作者
Clark, Nicholas L. [1 ]
Chuang, Shih-Yi [1 ]
Mauro, John C. [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
calcium aluminosilicates; coarsening; glass; kinetics; microstructure; nanodomains; phase separation; SPINODAL DECOMPOSITION; VOLUME FRACTION; COARSENING MECHANISM; KINETICS; LIQUID; TOUGHNESS; SILICATE; MODEL;
D O I
10.1111/jace.18050
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase-separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz-Slozof-Wagner (LSW)-type kinetics to a diffusion-controlled pseudo-coalescence mechanism occurs at similar to 17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica-rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.
引用
收藏
页码:193 / 206
页数:14
相关论文
共 50 条
  • [21] Rayleigh-Brillouin scattering in calcium aluminosilicate glasses
    Hwa, LG
    JOURNAL OF RAMAN SPECTROSCOPY, 1998, 29 (04) : 269 - 272
  • [22] Formation of photonic structures inSM2+-doped aluminosilicate glasses through phase separation
    Fujita, K
    Murai, S
    Nakanishi, K
    Hirao, K
    Micromachining Technology for Micro-Optics and Nano-Optics III, 2005, 5720 : 261 - 268
  • [23] Controlled phase-separation effect for enhanced optical refrigeration in yttrium-aluminosilicate glasses
    Meyneng, Thomas
    Thomas, Jyothis
    Gregoire, Nicolas
    Leelapornpisit, Weawkamol
    Valdez, Jesus
    Kashyap, Raman
    Messaddeq, Younes
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (23) : 7619 - 7628
  • [24] Formation of photonic structures in Sm2+-doped aluminosilicate glasses through phase separation
    Fujita, Koji
    Murai, Shunsuke
    Nakanishi, Kazuki
    Hirao, Kazuyuki
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (23-25) : 2496 - 2500
  • [25] ALUMINUM XAS AND NMR SPECTROSCOPIC STUDIES OF CALCIUM ALUMINOSILICATE GLASSES
    LANDRON, C
    COTE, B
    MASSIOT, D
    COUTURES, JP
    FLANK, AM
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 171 (01): : 9 - 20
  • [26] Analysis of bioactive fluoride-containing calcium aluminosilicate glasses
    De Maeyer, EAP
    Verbeeck, RMH
    ANALYTICA CHIMICA ACTA, 1998, 358 (01) : 79 - 83
  • [27] Analytical model of the network topology and rigidity of calcium aluminosilicate glasses
    Yang, Kai
    Hu, Yushu
    Li, Zhou
    Krishnan, N. M. Anoop
    Smedskjaer, Morten M.
    Hoover, Christian G.
    Mauro, John C.
    Sant, Gaurav
    Bauchy, Mathieu
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (08) : 3947 - 3962
  • [28] Topological hardening through oxygen triclusters in calcium aluminosilicate glasses
    Welch, Rebecca S.
    Lee, Kuo-Hao
    Wilkinson, Collin J.
    Ono, Madoka
    Bragatto, Caio B.
    Mauro, John C.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (12) : 6183 - 6193
  • [29] A STRUCTURAL MODEL FOR LOW SILICA CONTENT CALCIUM ALUMINOSILICATE GLASSES
    DUTT, DA
    HIGBY, PL
    GRISCOM, DL
    PHYSICS AND CHEMISTRY OF GLASSES, 1992, 33 (02): : 51 - 55
  • [30] SODIUM DIFFUSION AND ELECTRICAL CONDUCTIVITY IN SODIUM-ALUMINOSILICATE AND SODIUM-CALCIUM-ALUMINOSILICATE GLASSES
    HECKMAN, RW
    RINGLIEN, JA
    WILLIAMS, EL
    PHYSICS AND CHEMISTRY OF GLASSES, 1967, 8 (04): : 145 - &