In vivo bone formation by human bone marrow stromal cells: Effect of carrier particle size and shape

被引:1
|
作者
Mankani, MH
Kuznetsov, SA
Fowler, B
Kingman, A
Robey, PG
机构
[1] Natl Inst Dent & Craniofacial Res, Craniofacial & Skeletal Dis Branch, NIH, Bethesda, MD USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[3] Natl Inst Dent & Craniofacial Res, Off Director, NIH, Bethesda, MD USA
关键词
bone formation; bone marrow stromal cells; transplantation; hydroxyapatite-tricalcium phosphate;
D O I
10.1002/1097-0290(20010105)72:1<96::AID-BIT13>3.0.CO;2-A
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Successful closure of bone defects in patients remains an active area of basic and clinical research. A novel and promising approach is the transplantation of human bone marrow stromal cells (BMSCs), which have been shown to possess a significant osteogenic potential. The extent and quality of bone formation by transplanted human BMSCs strongly depends on the carrier matrix with which cells are transplanted; to date, by hydroxyapatite/tricalcium phosphate (HA/TCP) supports far more osteogenesis than any other matrix tested. In order to further improve the technique of BMSC transplantation, we studied whether commercially available HA/TCP particles, clinically approved as an osteoconductive material and commercially available as particles measuring 0.5-1.0 mm diameter, is an optimum matrix for promoting bone development by BMSCs. HA/TCP and HA particles of varying size were sieved into a variety of size ranges, from <0.044 mm to 1.0-2.0 mm. Transplants were formed by mixing 40 mg aliquots of particles with cultured passaged human BMSCs. They were placed in subcutaneous pockets in immunocompromised Bg-Nu-XID mice and harvested 4 or 10 weeks later. The transplants were examined histologically; the presence of bone within each transplant was evaluated using histomorphometry or blindly scored on a semiquantitative scale. Transplant morphology and the amount of new bone varied in a consistent fashion based on particle size and shape. Transplants incorporating HA/TCP particles of 0.1-0.25 mm size demonstrated the greatest bone formation at both 4 and 10 weeks; larger or smaller particles were associated with less extensive bone formation, while a size of 0.044 mm represented a threshold below which no bone formation could be observed. Flat-sided HA particles measuring 0.1-0.25 mm formed no bone. The differences in bone formation were not attributable to the differences in cell attachment among the groups. Instead, the size and spatial and structural organization of the particles within BMSC transplants appear to determine the extent of bone formation. These findings provide necessary information for the successful clinical application of BMSC transplantation techniques. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:96 / 107
页数:12
相关论文
共 50 条
  • [31] Effect of Boron on Osteogenic Differentiation of Human Bone Marrow Stromal Cells
    Ying, Xiaozhou
    Cheng, Shaowen
    Wang, Wei
    Lin, Zhongqin
    Chen, Qingyu
    Zhang, Wei
    Kou, Dongquan
    Shen, Yue
    Cheng, Xiaojie
    Rompis, Ferdinand An
    Peng, Lei
    Lu, Chuan Zhu
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2011, 144 (1-3) : 306 - 315
  • [32] The effect of human bone marrow stromal cells and dermal fibroblasts on angiogenesis
    Han, SK
    Chun, KW
    Gye, MS
    Kim, WK
    PLASTIC AND RECONSTRUCTIVE SURGERY, 2006, 117 (03) : 829 - 835
  • [33] The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells
    Baek, KH
    Lee, WY
    Oh, KW
    Tae, HJ
    Lee, JM
    Lee, EJ
    Han, JH
    Kang, MI
    Cha, BY
    Lee, KW
    Son, HY
    Kang, SK
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2005, 20 (03) : 438 - 444
  • [34] Effect of Boron on Osteogenic Differentiation of Human Bone Marrow Stromal Cells
    Xiaozhou Ying
    Shaowen Cheng
    Wei Wang
    Zhongqin Lin
    Qingyu Chen
    Wei Zhang
    Dongquan Kou
    Yue Shen
    Xiaojie Cheng
    Ferdinand An Rompis
    Lei Peng
    Chuan zhu Lu
    Biological Trace Element Research, 2011, 144 : 306 - 315
  • [35] Sequential Differentiation of Human Bone Marrow Stromal Cells for Bone Regeneration
    Huebner, Eva Johanna
    Padron, Nestor Torio
    Kubosch, David
    Finkenzeller, Guenter
    Suedkamp, Norbert P.
    Niemeyer, Philipp
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2015, 12 (05) : 331 - 342
  • [36] Sequential differentiation of human bone marrow stromal cells for bone regeneration
    Eva Johanna Huebner
    Nestor Torio Padron
    David Kubosch
    Guenter Finkenzeller
    Norbert P. Suedkamp
    Philipp Niemeyer
    Tissue Engineering and Regenerative Medicine, 2015, 12 : 331 - 342
  • [37] Bone formation in vivo: Comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts
    Krebsbach, PH
    Kuznetsov, SA
    Satomura, K
    Emmons, RVB
    Rowe, DW
    Robey, PG
    TRANSPLANTATION, 1997, 63 (08) : 1059 - 1069
  • [38] Lamellar Spacing in Cuboid Hydroxyapatite Scaffolds Regulates Bone Formation by Human Bone Marrow Stromal Cells
    Mankani, Mahesh H.
    Afghani, Shahrzad
    Franco, Jaime
    Launey, Max
    Marshall, Sally
    Marshall, Grayson W.
    Nissenson, Robert
    Lee, Janice
    Tomsia, Antoni P.
    Saiz, Eduardo
    TISSUE ENGINEERING PART A, 2011, 17 (11-12) : 1615 - 1623
  • [39] In Vivo Formation of Stable Hyaline Cartilage by Naive Human Bone Marrow Stromal Cells with Modified Fibrin Microbeads
    Kuznetsov, Sergei A.
    Hailu-Lazmi, Astar
    Cherman, Natasha
    de Castro, Luis F.
    Robey, Pamela G.
    Gorodetsky, Raphael
    STEM CELLS TRANSLATIONAL MEDICINE, 2019, 8 (06) : 586 - 592
  • [40] Bone reconstruction with bone marrow stromal cells
    Liu, Wei
    Cui, Lei
    Cao, Yilin
    STEM CELL TOOLS AND OTHER EXPERIMENTAL PROTOCOLS, 2006, 420 : 362 - 380