An interior-point method for minimizing convex functions on the convex hull of a point set

被引:0
|
作者
Stoer, Josef [1 ]
Botkin, Nikolai D.
Pykhteev, Oleg A.
机构
[1] Univ Wurzburg, Inst Math, D-97074 Wurzburg, Germany
[2] Tech Univ Munich, Fak Math, D-85744 Munich, Germany
关键词
minimizing convex functions on convex hulls; interior-point methods; Barycentric coordinates;
D O I
10.1080/02331930701421111
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The article describes an interior-point method for minimizing a smooth strictly convex function f: R-n -> R, f is an element of C-2(R-n), on the convex hull P of m points in R-n. The algorithm uses barycentric coordinates for representing points in P and generates points in P with positive coordinates. In particular, the algorithm can be used to compute the orthogonal projection of a point x(c) is an element of R-n to P.
引用
收藏
页码:515 / 524
页数:10
相关论文
共 50 条
  • [11] INTERIOR-POINT METHODS FOR CONVEX-PROGRAMMING
    JARRE, F
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1992, 26 (03): : 287 - 311
  • [12] Solving quadratically constrained convex optimization problems with an interior-point method
    Meszaros, Csaba
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (03): : 421 - 429
  • [13] A Combined Homotopy Infeasible Interior-Point Method for Convex Nonlinear Programming
    杨轶华
    吕显瑞
    刘庆怀
    [J]. Communications in Mathematical Research, 2006, (02) : 188 - 192
  • [14] Interior-point method for non-linear non-convex optimization
    Luksan, L
    Matonoha, C
    Vlcek, J
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (5-6) : 431 - 453
  • [15] A primal-dual regularized interior-point method for convex quadratic programs
    Friedlander M.P.
    Orban D.
    [J]. Friedlander, M. P. (mpf@cs.ubc.ca), 1600, Springer Verlag (04): : 71 - 107
  • [16] A Fast Convex Hull Algorithm of Planar Point Set
    Jiang, Hong-fei
    [J]. MECHATRONICS AND INTELLIGENT MATERIALS III, PTS 1-3, 2013, 706-708 : 1852 - 1855
  • [17] ON THE INTERIOR OF THE CONVEX HULL OF A EUCLIDEAN SET
    GUSTIN, W
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (04) : 299 - 301
  • [18] Fast algorithm for convex hull of planer point set
    Zhou, Min
    Yang, Bo
    Liang, Yun
    Huang, Qiong
    Wan, Junzhou
    [J]. Journal of Information and Computational Science, 2013, 10 (04): : 1237 - 1243
  • [19] A homogeneous interior-point algorithm for nonsymmetric convex conic optimization
    Anders Skajaa
    Yinyu Ye
    [J]. Mathematical Programming, 2015, 150 : 391 - 422
  • [20] A homogeneous interior-point algorithm for nonsymmetric convex conic optimization
    Skajaa, Anders
    Ye, Yinyu
    [J]. MATHEMATICAL PROGRAMMING, 2015, 150 (02) : 391 - 422