Preparation and thermoelectric properties of MoS2/Bi2Te3 nanocomposites

被引:17
|
作者
Tang, Gui [1 ]
Cai, Kefeng [1 ]
Cui, Jiaolin [2 ]
Yin, Junlin [1 ]
Shen, Shirley [3 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, 4800 Caoan Rd, Shanghai 201804, Peoples R China
[2] Ningbo Univ Technol, Sch Mat, Ningbo 315016, Zhejiang, Peoples R China
[3] CSIRO Mfg, Gate 3,Normanby Rd, Clayton, Vic 3190, Australia
基金
中国国家自然科学基金;
关键词
Bi2Te3; MoS2; Thermoelectric; Microwave assisted wet chemical method; BI2TE3; PERFORMANCE; NANOSHEETS;
D O I
10.1016/j.ceramint.2016.07.083
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MoS2 nanosheets with size of several-hundred nanometers were prepared by a hydrothermal intercalation/exfoliation method, then MoS2/Bi2Te3 composite nanopowders were prepared by a microwave-assisted wet chemical method using the MoS2 nanosheets, TeO2, Bi(NO3)(3)center dot 5H(2)O, KOH and ethylene glycol as raw materials. Bulk MoS2/Bi2Te3 nanocomposites were prepared by hot pressing the MoS2/Bi2Te3 composite nanopowders with MoS2 nanosheet content ranging from 0 to 17 wt% at 80 MPa and 648 K in vacuum. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate that MoS2 and Bi2Te3 did not react each other during the hot pressing. FESEM observation reveals that the MoS2/Bi2Te3 composite samples had a more compact microstructure than the pristine Bi2Te3 bulk sample. The MoS2 phase was relatively randomly dispersed in the composite. At a given temperature, the electrical conductivity of the composites increases first then decreases as the MoS2 content increases, whereas the Seebeck coefficient of the bulk nanocomposites does not change much. A highest power factor, similar to 18.3 mu W cm(-1) K-2 which is about 30% higher than that of pristine Bi2Te3 sample, at 319 K has been achieved from a nanocomposite sample containing 6 wt% MoS2.
引用
收藏
页码:17972 / 17977
页数:6
相关论文
共 50 条
  • [31] Thermoelectric properties of Bi2Te3/Sb2Te3 thin films
    Goncalves, L. M.
    Couto, C.
    Alpuim, P.
    Rowe, D. M.
    Correia, J. H.
    ADVANCED MATERIALS FORUM III, PTS 1 AND 2, 2006, 514-516 : 156 - 160
  • [32] Thermoelectric properties of Bi2Te3/Sb2Te3 superlattice structure
    Yamasaki, I
    Yamanaka, R
    Mikami, M
    Sonobe, H
    Mori, Y
    Sasaki, T
    XVII INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT 98, 1998, : 210 - 213
  • [33] Preparation of 1-D/3-D structured AgNWs/Bi2Te3 nanocomposites with enhanced thermoelectric properties
    Zhang, Qihao
    Ai, Xin
    Wang, Weijie
    Wang, Lianjun
    Jiang, Wan
    ACTA MATERIALIA, 2014, 73 : 37 - 47
  • [34] Thermoelectric properties of molten Bi2Te3, CuI, and AgI
    Nishikawa, Kazutaka
    Takeda, Yasuhiko
    Motohiro, Tomoyoshi
    APPLIED PHYSICS LETTERS, 2013, 102 (03)
  • [35] Effect of Nanopowders Addition on the Thermoelectric Properties of n-Type Bi2Te3 Nanocomposites
    Fan, X. A.
    Li, G. Q.
    Zhong, W.
    Duan, X. K.
    Yang, J. Y.
    INTEGRATED FERROELECTRICS, 2011, 128 : 1 - 7
  • [36] Effect of hydrostatic pressure on the thermoelectric properties of Bi2Te3
    Ibarra-Hernandez, Wilfredo
    Verstraete, Matthieu J.
    Raty, Jean-Yves
    PHYSICAL REVIEW B, 2014, 90 (24):
  • [37] Morphological Control of Bi2Te3 Nanotubes and Their Thermoelectric Properties
    Kim, Ha-Yeong
    Han, Mi-Kyung
    Kim, Sung-Jin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 6044 - 6047
  • [38] Thermoelectric properties of the multilayered Bi2Te3 with chalcogenide materials
    Ryu, H.
    Hyun, S. M.
    Song, J. Y.
    9TH EUROPEAN CONFERENCE ON THERMOELECTRICS (ECT2011), 2012, 1449 : 99 - 102
  • [39] Effect of NiTe Nanoinclusions on Thermoelectric Properties of Bi2Te3
    Sumithra, S.
    Takas, Nathan J.
    Nolting, Westly M.
    Sapkota, Sanshrut
    Poudeu, Pierre F. P.
    Stokes, Kevin L.
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) : 1401 - 1407
  • [40] Effect of NiTe Nanoinclusions on Thermoelectric Properties of Bi2Te3
    S. Sumithra
    Nathan J. Takas
    Westly M. Nolting
    Sanshrut Sapkota
    Pierre F.P. Poudeu
    Kevin L. Stokes
    Journal of Electronic Materials, 2012, 41 : 1401 - 1407