共 50 条
- [42] QoS based Multi-Agent vs. Single-Agent Deep Reinforcement Learning for V2X Resource Allocation [J]. 2021 IEEE SYMPOSIUM ON FUTURE TELECOMMUNICATION TECHNOLOGIES (SOFTT), 2021, : 39 - 45
- [43] Environment-Adaptive Multiple Access for Distributed V2X Network: A Reinforcement Learning Framework [J]. 2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
- [45] Communication-efficient Distributed Learning in V2X Networks: Parameter Selection and Quantization [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 603 - 608
- [46] Communication-Efficient Multi-Agent Actor-Critic Framework For Distributed Optimization Of Resource Allocation in V2X Networks [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3066 - 3071
- [47] Cross-Layer Resource Allocation for Multihop V2X Communications [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2019, 2019
- [49] V2X offloading and resource allocation under SDN and MEC architecture [J]. Wang, Zixin (377698527@qq.com), 1600, Editorial Board of Journal on Communications (41): : 114 - 124
- [50] Secure Resource Allocation for LTE-Based V2X Service [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (12) : 11324 - 11331