A Local Collaborative Distributed Reinforcement Learning Approach for Resource Allocation in V2X Networks

被引:0
|
作者
Zhang, Yue [1 ]
Tan, Guoping [1 ,2 ]
Zhou, Siyuan [1 ,2 ]
机构
[1] Hohai Univ, Sch Comp & Informat, Nanjing, Peoples R China
[2] Jiangsu Intelligent Transportat & Intelligent Dri, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
V2X; Resource allocation; Local collaboration; Reinforcement learning;
D O I
10.1007/978-3-030-86130-8_35
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a resource allocation approach for V2X networks based on distributed reinforcement learning with local collaboration. We construct a local collaborative mechanism for sharing information among vehicles. In this model each vehicle is able to obtain the instantaneously information of the environment shared by neighboring vehicles. By adopting proximal policy optimization algorithm, we addressed the issues of the joint allocation of spectrum and transmit power in a distributed manner. The simulation results show that agents can effectively learn an optimized strategy by cooperating with other vehicles in the adjacent area, so as to maximize the ergodic V2I capacity of the whole system while meeting the strict delay limits of the V2V link.
引用
收藏
页码:442 / 454
页数:13
相关论文
共 50 条
  • [41] Multi-Agent Reinforcement Learning- Based Resource Management for V2X Communication
    Zhao, Nan
    Wang, Jiaye
    Jin, Bo
    Wang, Ru
    Wu, Minghu
    Liu, Yu
    Zheng, Lufeng
    [J]. INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2023, 14 (01)
  • [42] QoS based Multi-Agent vs. Single-Agent Deep Reinforcement Learning for V2X Resource Allocation
    Bhadauria, Shubhangi
    Ravichandran, Lavanya
    Roth-Mandutz, Elke
    Fischer, Georg
    [J]. 2021 IEEE SYMPOSIUM ON FUTURE TELECOMMUNICATION TECHNOLOGIES (SOFTT), 2021, : 39 - 45
  • [43] Environment-Adaptive Multiple Access for Distributed V2X Network: A Reinforcement Learning Framework
    Kim, Seungmo
    Kim, Byung-Jun
    Park, B. Brian
    [J]. 2021 IEEE 93RD VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-SPRING), 2021,
  • [44] Learning-Based Robust Resource Allocation for Ultra-Reliable V2X Communications
    Wu, Weihua
    Liu, Runzi
    Yang, Qinghai
    Shan, Hangguan
    Quek, Tony Q. S.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (08) : 5199 - 5211
  • [45] Communication-efficient Distributed Learning in V2X Networks: Parameter Selection and Quantization
    Barbieri, Luca
    Savazzi, Stefano
    Nicoli, Monica
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 603 - 608
  • [46] Communication-Efficient Multi-Agent Actor-Critic Framework For Distributed Optimization Of Resource Allocation in V2X Networks
    Hammami, Nessrine
    Kim Khoa Nguyen
    [J]. ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3066 - 3071
  • [47] Cross-Layer Resource Allocation for Multihop V2X Communications
    He, Yanhua
    Tang, Liangrui
    Ren, Yun
    Rodriguez, Jonathan
    Mumtaz, Shahid
    [J]. WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2019, 2019
  • [48] Resource Allocation for V2X Communications: A Large Deviation Theory Perspective
    Guo, Chongtao
    Liang, Le
    Li, Geoffrey Ye
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (04) : 1108 - 1111
  • [49] V2X offloading and resource allocation under SDN and MEC architecture
    SDN和MEC架构下V2X卸载与资源分配
    [J]. Wang, Zixin (377698527@qq.com), 1600, Editorial Board of Journal on Communications (41): : 114 - 124
  • [50] Secure Resource Allocation for LTE-Based V2X Service
    Ahmed, Kazi J.
    Lee, Myung J.
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (12) : 11324 - 11331