Estimation of a multivariate stochastic volatility density by kernel deconvolution

被引:4
|
作者
Van Es, Bert [1 ]
Spreij, Peter [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1090 GE Amsterdam, Netherlands
关键词
Stochastic volatility models; Multivariate density estimation; Kernel estimator; Deconvolution; Mixing; ARCH MODELS; RATES;
D O I
10.1016/j.jmva.2010.12.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a continuous time stochastic volatility model. The model contains a stationary volatility process. We aim to estimate the multivariate density of the finite-dimensional distributions of this process. We assume that we observe the process at discrete equidistant instants of time. The distance between two consecutive sampling times is assumed to tend to zero. A multivariate Fourier-type deconvolution kernel density estimator based on the logarithm of the squared processes is proposed to estimate the multivariate volatility density. An expansion of the bias and a bound on the variance are derived. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:683 / 697
页数:15
相关论文
共 50 条
  • [31] Multivariate stochastic volatility: A review
    Asai, Manabu
    McAleer, Michael
    Yu, Jun
    ECONOMETRIC REVIEWS, 2006, 25 (2-3) : 145 - 175
  • [32] Monte Carlo likelihood estimation for three multivariate stochastic volatility models
    Jungbacker, Borus
    Koopman, Siem Jan
    ECONOMETRIC REVIEWS, 2006, 25 (2-3) : 385 - 408
  • [33] Fault Detection in a Multivariate Process Based on Kernel PCA and Kernel Density Estimation
    Samuel, Raphael Tari
    Cao, Yi
    PROCEEDINGS OF THE 2014 20TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC'14), 2014, : 146 - 151
  • [34] Improved kernel density estimation for clustered data using regularisation and deconvolution
    Chen, Q
    Sandoz, D
    Wynne, RJ
    Kruger, U
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1410 - 1414
  • [35] Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel
    Igarashi G.
    Sankhya A, 2018, 80 (2): : 247 - 266
  • [36] ON THE APPLICATION OF MULTIVARIATE KERNEL DENSITY ESTIMATION TO IMAGE ERROR CONCEALMENT
    Koloda, Jan
    Peinado, Antonio M.
    Sanchez, Victoria
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1330 - 1334
  • [37] Exact Boundary Correction Methods for Multivariate Kernel Density Estimation
    Yang, Ji-Yeon
    SYMMETRY-BASEL, 2023, 15 (09):
  • [38] Kernel density estimation for partial linear multivariate responses models
    Zhang, Jun
    Lin, Bingqing
    Zhou, Yan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 185
  • [39] Quick multivariate kernel density estimation for massive data sets
    Cheng, K. F.
    Chu, C. K.
    Lin, Dennis K. J.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2006, 22 (5-6) : 533 - 546
  • [40] Root n bandwidths selectors in multivariate kernel density estimation
    Wu, TJ
    Tsai, MH
    PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (04) : 537 - 558