OBLIQUELY REFLECTED BROWNIAN MOTION IN NONSMOOTH PLANAR DOMAINS

被引:5
|
作者
Burdzy, Krzysztof [1 ]
Chen, Zhen-Qing [1 ]
Marshall, Donald [1 ]
Ramanan, Kavita [2 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[2] Brown Univ, Div Appl Math, Box F,182 George St, Providence, RI 02912 USA
来源
ANNALS OF PROBABILITY | 2017年 / 45卷 / 05期
基金
美国国家科学基金会;
关键词
Reflected Brownian motion; oblique reflection; simply connected domains; conformal mapping; stationary distribution; excursion reflected Brownian motion; Brownian motion with darning; Excursion reflected Brownian motion; rate of rotation of obliquely reflected Brownian motion; POISSON POINT-PROCESSES; MARKOV-PROCESSES; DIFFUSIONS;
D O I
10.1214/16-AOP1130
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct obliquely reflected Brownian motions in all bounded simply connected planar domains, including nonsmooth domains, with general reflection vector fields on the boundary. Conformal mappings and excursion theory are our main technical tools. A key intermediate step, which may be of independent interest, is an alternative characterization of reflected Brownian motions in smooth bounded planar domains with a given field of angles of oblique reflection on the boundary in terms of a pair of quantities, namely an integrable positive harmonic function, which represents the stationary distribution of the process, and a real number that represents, in a suitable sense, the asymptotic rate of rotation of the process around a reference point in the domain. Furthermore, we also show that any obliquely reflected Brownian motion in a simply connected Jordan domain can be obtained as a suitable limit of obliquely reflected Brownian motions in smooth domains.
引用
收藏
页码:2971 / 3037
页数:67
相关论文
共 50 条
  • [41] On the rate of convergence to equilibrium for reflected Brownian motion
    Peter W. Glynn
    Rob J. Wang
    Queueing Systems, 2018, 89 : 165 - 197
  • [42] EXACT SIMULATION OF MULTIDIMENSIONAL REFLECTED BROWNIAN MOTION
    Blanchet, Jose
    Murthy, Karthyek
    JOURNAL OF APPLIED PROBABILITY, 2018, 55 (01) : 137 - 156
  • [43] NONPOLAR POINTS FOR REFLECTED BROWNIAN-MOTION
    BURDZY, K
    MARSHALL, DE
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1993, 29 (02): : 199 - 228
  • [44] REFLECTED BROWNIAN-MOTION IN A POLYHEDRAL REGION
    WILLIAMS, RJ
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 10 - 11
  • [45] ON THE DISTRIBUTION OF MULTIDIMENSIONAL REFLECTED BROWNIAN-MOTION
    HARRISON, JM
    REIMAN, MI
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 41 (02) : 345 - 361
  • [46] On the rate of convergence to equilibrium for reflected Brownian motion
    Glynn, Peter W.
    Wang, Rob J.
    QUEUEING SYSTEMS, 2018, 89 (1-2) : 165 - 197
  • [47] On the infimum attained by the reflected fractional Brownian motion
    K. Dębicki
    K. M. Kosiński
    Extremes, 2014, 17 : 431 - 446
  • [48] DISCRETIZATION ERROR OF REFLECTED FRACTIONAL BROWNIAN MOTION
    McGlaughlin, Peter
    Chronopoulou, Alexandra
    2016 WINTER SIMULATION CONFERENCE (WSC), 2016, : 270 - 276
  • [49] Arbitrage problems with reflected geometric Brownian motion
    Dean Buckner
    Kevin Dowd
    Hardy Hulley
    Finance and Stochastics, 2024, 28 : 1 - 26
  • [50] Set estimation from reflected Brownian motion
    Cholaquidis, Alejandro
    Fraiman, Ricardo
    Lugosi, Gabor
    Pateiro-Lopez, Beatriz
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (05) : 1057 - 1078