Estimation of quantile treatment effects with Stata

被引:14
|
作者
Froelich, Markus [1 ,2 ]
Melly, Blaise [3 ]
机构
[1] Univ Mannheim, Bonn, Germany
[2] Inst Study Labor, Bonn, Germany
[3] Brown Univ, Dept Econ, Providence, RI 02912 USA
来源
STATA JOURNAL | 2010年 / 10卷 / 03期
关键词
st0203; ivqte; locreg; quantile treatment effects; nonparametric regression; instrumental variables;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33-50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91-117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica, 75: 259-276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frolich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).
引用
收藏
页码:423 / 457
页数:35
相关论文
共 50 条
  • [31] Quantile Treatment Effects of College Quality on Earnings
    Andrews, Rodney J.
    Li, Jing
    Lovenheim, Michael F.
    [J]. JOURNAL OF HUMAN RESOURCES, 2016, 51 (01) : 200 - 238
  • [32] Quantile treatment effects in the regression discontinuity design
    Frandsen, Brigham R.
    Froelich, Markus
    Melly, Blaise
    [J]. JOURNAL OF ECONOMETRICS, 2012, 168 (02) : 382 - 395
  • [33] Unconditional Quantile Treatment Effects Under Endogeneity
    Froelich, Markus
    Melly, Blaise
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2013, 31 (03) : 346 - 357
  • [34] Ensemble and calibration multiply robust estimation for quantile treatment effect
    He, Xiaohong
    Wang, Lei
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (15) : 3823 - 3845
  • [35] Principal quantile treatment effect estimation using principal scores
    Mizuma, Kotaro
    Hashimoto, Takamasa
    Sakui, Sho
    Kuroda, Shingo
    [J]. STATISTICS IN MEDICINE, 2024,
  • [36] Shrinkage estimation of varying covariate effects based on quantile regression
    Peng, Limin
    Xu, Jinfeng
    Kutner, Nancy
    [J]. STATISTICS AND COMPUTING, 2014, 24 (05) : 853 - 869
  • [37] Shrinkage estimation of varying covariate effects based on quantile regression
    Limin Peng
    Jinfeng Xu
    Nancy Kutner
    [J]. Statistics and Computing, 2014, 24 : 853 - 869
  • [38] Nonparametric quantile estimation
    Takeuchi, Ichiro
    Le, Quoc V.
    Sears, Timothy D.
    Smola, Alexander J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1231 - 1264
  • [39] Estimation of Censored Quantile Regression for Panel Data With Fixed Effects
    Galvao, Antonio F.
    Lamarche, Carlos
    Lima, Luiz Renato
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1075 - 1089
  • [40] On quantile estimation by bootstrap
    Brodin, E
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1398 - 1406