Estimation of quantile treatment effects with Stata

被引:14
|
作者
Froelich, Markus [1 ,2 ]
Melly, Blaise [3 ]
机构
[1] Univ Mannheim, Bonn, Germany
[2] Inst Study Labor, Bonn, Germany
[3] Brown Univ, Dept Econ, Providence, RI 02912 USA
来源
STATA JOURNAL | 2010年 / 10卷 / 03期
关键词
st0203; ivqte; locreg; quantile treatment effects; nonparametric regression; instrumental variables;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33-50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91-117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica, 75: 259-276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frolich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).
引用
收藏
页码:423 / 457
页数:35
相关论文
共 50 条
  • [1] Censored quantile instrumental-variable estimation with Stata
    Chernozhukov, Victor
    Fernandez-Val, Ivan
    Han, Sukjin
    Kowalski, Amanda
    [J]. STATA JOURNAL, 2019, 19 (04): : 768 - 781
  • [2] Efficient semiparametric estimation of quantile treatment effects
    Firpo, Sergio
    [J]. ECONOMETRICA, 2007, 75 (01) : 259 - 276
  • [3] Exploring marginal treatment effects: Flexible estimation using Stata
    Andresen, Martin Eckhoff
    [J]. STATA JOURNAL, 2018, 18 (01): : 118 - 158
  • [4] Logistic quantile regression in Stata
    Orsini, Nicola
    Bottai, Matteo
    [J]. STATA JOURNAL, 2011, 11 (03): : 327 - 344
  • [5] Speaking Stata: Quantile-quantile plots, generalized
    Cox, Nicholas J.
    [J]. STATA JOURNAL, 2024, 24 (03): : 514 - 534
  • [6] Multiply robust estimation of causal quantile treatment effects
    Xie, Yuying
    Cotton, Cecilia
    Zhu, Yeying
    [J]. STATISTICS IN MEDICINE, 2020, 39 (28) : 4238 - 4251
  • [7] Implementing quantile selection models in Stata
    Munoz, Ercio
    Siravegna, Mariel
    [J]. STATA JOURNAL, 2021, 21 (04): : 952 - 971
  • [8] Speaking Stata: The protean quantile plot
    Cox, Nicholas J.
    [J]. STATA JOURNAL, 2005, 5 (03): : 442 - 460
  • [9] On the estimation of quantile treatment effects using a semiparametric propensity score
    Zhan, Mingfeng
    Yan, Karen X.
    [J]. ECONOMETRIC REVIEWS, 2024, 43 (09) : 752 - 773
  • [10] Multiply Robust Estimation of Quantile Treatment Effects with Missing Responses
    Wang, Xiaorui
    Qin, Guoyou
    Tang, Yanlin
    Wang, Yinfeng
    [J]. COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,