EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

被引:4
|
作者
Li, Rusen [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
generalized hyperharmonic numbers; Euler sums; Faulhaber's formula; Bernoulli numbers;
D O I
10.7169/facm/1953
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly show that Euler sums of generalized hyperharmonic numbers can be expressed in terms of linear combinations of the classical Euler sums.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 50 条
  • [21] Generalized alternating hyperharmonic number sums with reciprocal binomial coefficients
    Li, Rusen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 504 (01)
  • [22] On generalized hyperharmonic numbers of order r, Hn,mr (σ)
    Koparal, Sibel
    Omur, Nese
    Elkhiri, Laid
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (04) : 804 - 812
  • [23] GENERALIZED EULER NUMBERS
    GROSSWALD, E
    MATHEMATISCHE ZEITSCHRIFT, 1974, 140 (02) : 173 - 177
  • [24] On harmonic numbers and nonlinear Euler sums
    Xu, Ce
    Cai, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 1009 - 1042
  • [25] PARAMETRIC EULER SUMS OF HARMONIC NUMBERS
    Quan, Junjie
    Wang, Xiyu
    Wei, Xiaoxue
    Xu, Ce
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (04) : 1033 - 1051
  • [26] Sums of products of the degenerate Euler numbers
    Ming Wu
    Hao Pan
    Advances in Difference Equations, 2014
  • [27] Sums of products of the degenerate Euler numbers
    Wu, Ming
    Pan, Hao
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [28] SUMS OF GENERALIZED FIBONACCI NUMBERS
    Cerin, Zvonko
    Gianella, Gian Mario
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 12 (02): : 157 - 168
  • [29] Sums of Generalized Octahedral Numbers
    Ponomarenko, Vadim
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (07): : 677 - 677
  • [30] Sums of Generalized Tetrahedral Numbers
    Ponomarenko, Vadim
    AMERICAN MATHEMATICAL MONTHLY, 2022, 129 (05): : 474 - 474