Fuzzy regression: a genetic programming approach

被引:0
|
作者
Feuring, T [1 ]
Golubski, W [1 ]
Gassmann, M [1 ]
机构
[1] Univ Siegen, Dept Elect Engn & Comp Sci, D-57068 Siegen, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given some data pairs ((X) over bar (i), (Y) over bar (i)) 1 less than or equal to i less than or equal to k of fuzzy numbers we are interesting in finding a fuzzy function F with best fits the given data. Because of fuzzy arithmetic we cannot compute a fuzzy function with F((X) over bar (i)) = (Y) over bar (i) for all i as in the crisp case. Therefore we used a genetic programming approach for finding a suitable fuzzy function. We will present some tests and argue that this method is quite suitable for obtaining fuzzy function which can explain the given data.
引用
收藏
页码:349 / 352
页数:4
相关论文
共 50 条
  • [21] Nonlinear parametric regression in genetic programming
    Kwon, Yung-Keun
    Choi, Sung-Soon
    Moon, Byung-Ro
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 943 - +
  • [22] The Inefficiency of Genetic Programming for Symbolic Regression
    Kronberger, Gabriel
    de Franca, Fabricio Olivetti
    Desmond, Harry
    Bartlett, Deaglan J.
    Kammerer, Lukas
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PPSN 2024, PT I, 2024, 15148 : 273 - 289
  • [23] Sequential Symbolic Regression with Genetic Programming
    Oliveira, Luiz Otavio V. B.
    Otero, Fernando E. B.
    Pappa, Gisele L.
    Albinati, Julio
    GENETIC PROGRAMMING THEORY AND PRACTICE XII, 2015, : 73 - 90
  • [24] Symbolic regression via genetic programming
    Augusto, DA
    Barbosa, HJC
    SIXTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, VOL 1, PROCEEDINGS, 2000, : 173 - 178
  • [25] Taylor Genetic Programming for Symbolic Regression
    He, Baihe
    Lu, Qiang
    Yang, Qingyun
    Luo, Jake
    Wang, Zhiguang
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 946 - 954
  • [26] On improving genetic programming for symbolic regression
    Gustafson, S
    Burke, EK
    Krasnogor, N
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 912 - 919
  • [27] Compositional Genetic Programming for Symbolic Regression
    Krawiec, Krzysztof
    Kossinski, Dominik
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 570 - 573
  • [28] Statistical genetic programming for symbolic regression
    Haeri, Maryam Amir
    Ebadzadeh, Mohammad Mehdi
    Folino, Gianluigi
    APPLIED SOFT COMPUTING, 2017, 60 : 447 - 469
  • [29] A novel nonlinear programming approach for estimating CAPM beta of an asset using fuzzy regression
    Kocadagli, Ozan
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (03) : 858 - 865
  • [30] A weighted goal programming approach to fuzzy linear regression with crisp inputs and type-2 fuzzy outputs
    Hosseinzadeh, E.
    Hassanpour, H.
    Arefi, M.
    SOFT COMPUTING, 2015, 19 (05) : 1143 - 1151