PVMC: Task Mapping and Scheduling Under Process Variation Heterogeneity in Mixed-Criticality Systems

被引:6
|
作者
Bahrami, Fahimeh [1 ]
Ranjbar, Behnaz [1 ]
Rohbani, Nezam [1 ]
Ejlali, Alireza [2 ]
机构
[1] Sharif Univ Technol, Dept Comp Engn, Tehran 111558639, Iran
[2] Inst Res Fundamental Sci IPM, Sch Comp Sci, Tehran 1953833511, Iran
关键词
Task analysis; Reliability; Quality of service; Energy management; Timing; Resource management; Power demand; Mixed-criticality system; process variation; task allocation; energy management; reliability; constrained-optimization; MANAGEMENT; POWER;
D O I
10.1109/TETC.2021.3072286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Embedded Systems (ESs) have migrated from special-purpose hardware to commodity hardware. These systems have also tended to Mixed-Criticality (MC) implementations, executing applications of different criticalities upon a shared platform. Multi-cores, which are commonly used to design MC Systems (MCSs), bring out new challenges due to the Process Variation (PV). Power and frequency asymmetry affects the predictability of ESs. In this work, variation-aware techniques are explored to not only improve the reliability of MCSs, but also aid the scheduling and energy saving of them. We leverage the Core-to-Core (C2C) variations to protect high-criticality tasks and provide full service for a high percentage of low-criticality tasks. We formulate a constrained Integer Linear Program (ILP) and propose an optimization heuristic for task mapping and scheduling under PV in Mixed-Criticality systems (PVMC). Our proposed techniques also guarantee timing, reliability, and Thermal Design Power (TDP) constraints by considering the impact of task mapping in variation-affected platforms on system reliability and peak power consumption. Experiments demonstrate that our ILP framework and PVMC algorithm can greatly improve the schedulability and the overall Quality-of-Service (QoS), and provide energy saving up to 27.1 percent under different quantities of PV compared with a state-of-the-art algorithm.
引用
收藏
页码:1166 / 1177
页数:12
相关论文
共 50 条
  • [21] Fault-Tolerant Task Scheduling for Mixed-Criticality Real-Time Systems
    Zhou, Junlong
    Yin, Min
    Li, Zhifang
    Cao, Kun
    Yan, Jianming
    Wei, Tongquan
    Chen, Mingsong
    Fu, Xin
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (01)
  • [22] The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems
    Baruah, S.
    Bonifaci, V.
    D'Angelo, G.
    Li, H.
    Marchetti-Spaccamela, A.
    van der Ster, S.
    Stougie, L.
    PROCEEDINGS OF THE 24TH EUROMICRO CONFERENCE ON REAL-TIME SYSTEMS (ECRTS 2012), 2012, : 145 - 154
  • [23] Mixed-criticality scheduling on multiprocessors
    Sanjoy Baruah
    Bipasa Chattopadhyay
    Haohan Li
    Insik Shin
    Real-Time Systems, 2014, 50 : 142 - 177
  • [24] Sustainability in Mixed-Criticality Scheduling
    Guo, Zhishan
    Sruti, Sai
    Ward, Bryan C.
    Baruah, Sanjoy
    2017 IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS), 2017, : 24 - 33
  • [25] An Elastic Mixed-Criticality Task Model and Its Scheduling Algorithm
    Su, Hang
    Zhu, Dakai
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 147 - 152
  • [26] Memory-Aware Scheduling for Mixed-Criticality Systems
    Li, Zheng
    Wang, Li
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2016, PT II, 2016, 9787 : 140 - 156
  • [27] Time-Triggered Scheduling of Mixed-Criticality Systems
    Behera, Lalatendu
    Bhaduri, Purandar
    ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2017, 22 (04)
  • [28] Energy Efficient DVFS Scheduling for Mixed-Criticality Systems
    Huang, Pengcheng
    Kumar, Pratyush
    Giannopoulou, Georgia
    Thiele, Lothar
    2014 INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE (EMSOFT), 2014,
  • [29] On the Scheduling of Fault-Tolerant Mixed-Criticality Systems
    Huang, Pengcheng
    Yang, Hoeseok
    Thiele, Lothar
    2014 51ST ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2014,
  • [30] Mixed-criticality scheduling on multiprocessors
    Baruah, Sanjoy
    Chattopadhyay, Bipasa
    Li, Haohan
    Shin, Insik
    REAL-TIME SYSTEMS, 2014, 50 (01) : 142 - 177