Line segments and elliptic arcs on the boundary of a numerical range

被引:11
|
作者
Gau, Hwa-Long [1 ]
Wu, Pei Yuan [2 ]
机构
[1] Natl Cent Univ, Dept Math, Chungli 32001, Taiwan
[2] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 300, Taiwan
来源
LINEAR & MULTILINEAR ALGEBRA | 2008年 / 56卷 / 1-2期
关键词
numerical range; nilpotent matrix;
D O I
10.1080/03081080701396051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an n-by-n complex matrix A, we consider the numbers of line segments and elliptic arcs on the boundary partial derivative W(A) of its numerical range. We show that (a) if n >= 4 and A has an (n-1)-by-(n-1) submatrix B with W(B) an elliptic disc, then there can be at most 2n-2 line segments on partial derivative W(A), and (b) if n >= 3, then partial derivative W(A) contains at most (n-2) arcs of any ellipse. Moreover, both upper bounds are sharp. For nilpotent matrices, we also obtain analogous results with sharper bounds.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 50 条
  • [21] New characterizations of segments and arcs
    Blumenthal, LM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1943, 29 : 107 - 109
  • [22] Placing Segments on Parallel Arcs
    Ng, Yen Kaow
    Jia, Wenlong
    Li, Shuai Cheng
    [J]. COMBINATORIAL ALGORITHMS, IWOCA 2018, 2018, 10979 : 298 - 310
  • [23] Where the boundary of the numerical range is not round
    Hubner, M
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1995, 25 (04) : 1351 - 1355
  • [24] On eigenvalues and boundary curvature of the numerical range
    Caston, L
    Savova, M
    Spitkovsky, I
    Zobin, N
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 322 (1-3) : 129 - 140
  • [25] On flat portions on the boundary of the numerical range
    Brown, ES
    Spitkovsky, IA
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 : 75 - 109
  • [26] Inverse continuity on the boundary of the numerical range
    Leake, Timothy
    Lins, Brian
    Spitkovsky, Ilya M.
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10): : 1335 - 1345
  • [27] ANALYTIC PROPERTIES OF THE BOUNDARY OF THE NUMERICAL RANGE
    NARCOWICH, FJ
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (01) : 67 - 77
  • [28] Numerical approximation of the boundary of numerical range of matrix polynomials
    Psarrakos, P
    Tsitouras, C
    [J]. ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 318 - 320
  • [29] Straight line segments and circular arcs for significant description of 2D contours
    Mokhtari, M
    Bergevin, R
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 205 - 212
  • [30] BOUNDARY OF NUMERICAL RANGE - PRELIMINARY REPORT
    LANCASTE.JS
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A184 - &