Identification of the relevant input variables for predicting the parabolic trough solar collector's outlet temperature using an artificial neural network and a multiple linear regression model

被引:8
|
作者
Ajbar, Wassila [1 ]
Parrales, A. [2 ]
Silva-Martinez, S. [3 ]
Bassam, A. [4 ]
Jaramillo, O. A. [5 ]
Hernandez, J. A. [3 ]
机构
[1] Univ Autonoma Estado Morelos UAEM, Posgrad Ingn Ciencias & Aplicadas CIICAp, Av Univ 1001,Col Chamilpa, Cuernavaca 60209, Morelos, Mexico
[2] Univ Autonoma Estado Morelos, CONACyT Ctr Invest Ingenieria & Ciencias Aplicada, Av Univ 1001,Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[3] Univ Autonoma Estado Morelos UAEM, Ctr Invest Ingenieria & Ciencias Aplicadas CIICAp, Av Univ 1001,Col Chamilpa, Cuernavaca 60209, Morelos, Mexico
[4] Univ Autonoma Yucat an, Fac Ingn, Av Ind Contaminantes S-N, Merida 97310, Yucatan, Mexico
[5] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Privada Xochicalco S-N,Col Azteca, Temixco 62580, Morelos, Mexico
关键词
PERFORMANCE; ANN; SYSTEM; ENERGY; TUBE;
D O I
10.1063/5.0055992
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main objective of this study is to present the most influencing input variables for a parabolic trough solar collector (PTSC) outlet temperature through prediction and optimization. Six artificial neural network (ANN) and four multiple linear regression (MLR) models were proposed, validated, and compared in detail. Temperature, wind speed, rim angle, flow rate, and solar radiation were used as input variables. The simulation showed that ANN-1 and MLR with Second-Order Equation (SOE) are the models that yielded the best results with R-2 = 0.9984 and R-2 = 0.9958 and with an RMSE = 0.7708 and 1.6031, respectively. The sensitivity analysis results of the ANN-1 model trained, with and without biases, showed that the inlet temperature was the most significant parameter influencing the PTSC outlet temperature. Both models yielding the best results were inverted to estimate the optimal input parameter using the trust-region reflective algorithm optimization method. The optimization results showed that ANNi and MLR-SOEi estimated the input temperature with an error< 4.008% and had a very short-elapsed prediction time <0.2277 s. Due to high accuracy and short computing time, ANN-1 and ANNi are more suitable than MLR-SOE for simulating and optimizing the PTSC outlet temperature. Likewise, the MLR-SOE method proved to be a simpler and cheaper alternative than the ANN method. Published under an exclusive license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 23 条
  • [1] Improvement of the classical artificial neural network simulation model of the parabolic trough solar collector outlet temperature and thermal efficiency using the conformable activation functions
    Ajbar, W.
    Solis-Perez, J. E.
    Viera-Martin, E.
    Parrales, A.
    Gomez-Aguilar, J. F.
    Hernandez, J. A.
    [J]. SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 36
  • [2] Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network
    Heng, Shye Yunn
    Asako, Yutaka
    Suwa, Tohru
    Nagasaka, Ken
    [J]. RENEWABLE ENERGY, 2019, 131 : 168 - 179
  • [3] Identification of relevant input variables for prediction of 1-minute time step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models
    Yadav, Amit Kumar
    Chandel, S. S.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 : 955 - 969
  • [4] Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network
    Dehaj, Mohammad Shafiey
    Mohiabadi, Mostafa Zamani
    Hosseini, Seyed Mohammad Sadegh
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (12)
  • [5] Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network
    Mohammad Shafiey Dehaj
    Mostafa Zamani Mohiabadi
    Seyed Mohammad Sadegh Hosseini
    [J]. Environmental Monitoring and Assessment, 2020, 192
  • [6] Solar air heater performance prediction using artificial neural network technique with relevant input variables
    Ghritlahre, Harish Kumar
    Chandrakar, Purvi
    Ahmad, Ashfaque
    [J]. ARCHIVES OF THERMODYNAMICS, 2020, 41 (03) : 255 - 282
  • [7] SUPERIORITY OF ARTIFICIAL NEURAL NETWORK MODEL OVER MULTIPLE LINEAR REGRESSION MODEL FOR PREDICTING BROCCOLI YIELD
    Mishra, Minakshi
    Thakur, Ratan Kumar
    [J]. INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 (02): : 757 - 762
  • [8] Using Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John's Wort Leaves
    Odabas, Mehmet Serhat
    Kayhan, Gokhan
    Ergun, Erhan
    Senyer, Nurettin
    [J]. COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (02) : 237 - 245
  • [9] An artificial neural network model for predicting compression strength of heat treated woods and comparison with a multiple linear regression model
    Tiryaki, Sebahattin
    Aydin, Aytac
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2014, 62 : 102 - 108
  • [10] Development of air–soil temperature model using computational intelligence paradigms: artificial neural network versus multiple linear regression
    Salim Heddam
    [J]. Modeling Earth Systems and Environment, 2019, 5 : 747 - 751