Improvement of the classical artificial neural network simulation model of the parabolic trough solar collector outlet temperature and thermal efficiency using the conformable activation functions

被引:2
|
作者
Ajbar, W. [1 ]
Solis-Perez, J. E. [2 ]
Viera-Martin, E. [3 ]
Parrales, A. [4 ]
Gomez-Aguilar, J. F. [5 ]
Hernandez, J. A. [5 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, Mexico
[2] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super Unidad Juriquilla, Blvd Juriquilla 3001, Juriquilla 76230, Queretaro, Mexico
[3] Tecnol Nacl Mexico, CENIDET, Interior Internado Palmira S-N,Col Palmira, Cuernavaca 62490, Morelos, Mexico
[4] Univ Autonoma Estado Morelos, CONAHCyT Ctr Invest Ingn & Ciencias Aplicadas CIIC, Av Univ 1001,Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
[5] Univ Autonoma Estado Morelos, Ctr Invest Ingn & Ciencias Aplicadas CIICAp IICBA, Av Univ 1001,Col Chamilpa, Cuernavaca 62209, Morelos, Mexico
来源
关键词
Conformable activation functions; Multilayer feedforward neural network; Conformable calculus; Parabolic trough solar collectors; Conformable exponential function; PERFORMANCE; SYSTEM;
D O I
10.1016/j.segan.2023.101200
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The outlet temperature and the thermal efficiency predictions of the PTSC are essential parameters in the solar thermal power system. Therefore, it is crucial to have a prediction model that can predict its spatiotemporal behavior to the greatest extent possible. For that, the present study provides improved models of the classical ANN model by using ELU, swish, softplus, logsig, and tansig functions through the exponential transfer function to improve the outlet temperature prediction performance and thermal efficiency of PTSC. The PTSC's outlet temperature simulation showed that the ANN model of topology 6-2-1 with the conformable swish transfer function (cswish) was the best model among nine other studied models, with an R2 and R2adj of 0.9988, and MAE of 0.0052. The simulation of PTSC's thermal efficiency proved that the conformable functions logsig, tansig, ELU and the classical ELU function involved in the ANN model for 6-3-1 achieved better results with approximately 95% precision. With the non-integer activation functions, was reduced a neuron in the hidden layer, which leads to the simplicity of the prediction model compared to the use of the classical activation functions. The proposed activation functions do not require high-performance features according to their execution times. Therefore, it could be a good alternative for engineers to apply in other thermal energy systems to make their prediction models more accessible and practical in the control and optimization process.
引用
收藏
页数:13
相关论文
共 45 条
  • [1] Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network
    Heng, Shye Yunn
    Asako, Yutaka
    Suwa, Tohru
    Nagasaka, Ken
    [J]. RENEWABLE ENERGY, 2019, 131 : 168 - 179
  • [2] Thermal efficiency improvement of a solar desalination process by parabolic trough collector
    Randha, Bellatreche
    Maamar, Ouali
    Mourad, Balistrou
    Djilali, Tassalit
    [J]. WATER SUPPLY, 2021, 21 (07) : 3698 - 3709
  • [3] Identification of the relevant input variables for predicting the parabolic trough solar collector's outlet temperature using an artificial neural network and a multiple linear regression model
    Ajbar, Wassila
    Parrales, A.
    Silva-Martinez, S.
    Bassam, A.
    Jaramillo, O. A.
    Hernandez, J. A.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (04)
  • [4] Thermal efficiency improvement of parabolic trough solar collector using different kinds of hybrid nanofluids
    Ajbar, Wassila
    Hernandez, J. A.
    Parrales, A.
    Torres, Lizeth
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2023, 42
  • [5] Optimization operation of a parabolic trough collector using artificial neural network
    May Tzuc, O.
    Bassam, A.
    Escalante Soberanis, M. A.
    Vazquez Caamal, M.
    [J]. 2016 XVI INTERNATIONAL CONGRESS OF THE MEXICAN HYDROGEN SOCIETY (CSMH), 2016,
  • [6] Modeling and simulation to determine the thermal efficiency of a parabolic solar trough collector system
    Quezada-Garcia, Sergio
    Sanchez-Mora, Heriberto
    Polo-Labarrios, Marco A.
    Cazares-Ramirez, Ricardo I.
    [J]. CASE STUDIES IN THERMAL ENGINEERING, 2019, 16
  • [7] OUTLET TEMPERATURE PREDICTION OF PARABOLIC TROUGH SOLAR FIELD BASED ON HYBRID NEURAL NETWORK
    Yan L.
    Lei D.
    Li X.
    Xu L.
    Dong J.
    Wang Z.
    [J]. Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (05): : 265 - 273
  • [8] Modeling and Simulation of Solar Thermal Power System Using Parabolic Trough Collector
    Najjar, Yousef S. H.
    Sadeq, Jawad
    [J]. JOURNAL OF ENERGY ENGINEERING, 2017, 143 (02)
  • [9] Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network
    Dehaj, Mohammad Shafiey
    Mohiabadi, Mostafa Zamani
    Hosseini, Seyed Mohammad Sadegh
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2020, 192 (12)
  • [10] Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network
    Mohammad Shafiey Dehaj
    Mostafa Zamani Mohiabadi
    Seyed Mohammad Sadegh Hosseini
    [J]. Environmental Monitoring and Assessment, 2020, 192