Mining imaging and clinical data with machine learning approaches for the diagnosis and early detection of Parkinson's disease

被引:20
|
作者
Zhang, Jing [1 ]
机构
[1] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
关键词
SLEEP BEHAVIOR DISORDER; FUNCTIONAL CONNECTIVITY; DIFFERENTIAL-DIAGNOSIS; SUBSTANTIA-NIGRA; NEURAL-NETWORK; AUTOMATIC CLASSIFICATION; STRIATAL CONNECTIVITY; MRI DATA; ACCURACY; FEATURES;
D O I
10.1038/s41531-021-00266-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Parkinson's disease (PD) is a common, progressive, and currently incurable neurodegenerative movement disorder. The diagnosis of PD is challenging, especially in the differential diagnosis of parkinsonism and in early PD detection. Due to the advantages of machine learning such as learning complex data patterns and making inferences for individuals, machine-learning techniques have been increasingly applied to the diagnosis of PD, and have shown some promising results. Machine-learning-based imaging applications have made it possible to help differentiate parkinsonism and detect PD at early stages automatically in a number of neuroimaging studies. Comparative studies have shown that machine-learning-based SPECT image analysis applications in PD have outperformed conventional semi-quantitative analysis in detecting PD-associated dopaminergic degeneration, performed comparably well as experts' visual inspection, and helped improve PD diagnostic accuracy of radiologists. Using combined multimodal (imaging and clinical) data in these applications may further enhance PD diagnosis and early detection. To integrate machine-learning-based diagnostic applications into clinical systems, further validation and optimization of these applications are needed to make them accurate and reliable. It is anticipated that machine-learning techniques will further help improve differential diagnosis of parkinsonism and early detection of PD, which may reduce the error rate of PD diagnosis and help detect PD at premotor stage to make it possible for early treatments (e.g., neuroprotective treatment) to slow down PD progression, prevent severe motor symptoms from emerging, and relieve patients from suffering.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Machine Learning and Wearable Sensors for the Early Detection of Balance Disorders in Parkinson's Disease
    Di Zubiena, Francesco Castelli Gattinara
    Menna, Greta
    Mileti, Ilaria
    Zampogna, Alessandro
    Asci, Francesco
    Paoloni, Marco
    Suppa, Antonio
    Del Prete, Zaccaria
    Palermo, Eduardo
    SENSORS, 2022, 22 (24)
  • [32] A Machine Learning approach for Early Detection of Parkinson's Disease Using acoustic traces
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    Iammarino, Martina
    Montano, Debora
    Verdone, Chiara
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [33] Sex-Specific Imaging Biomarkers for Parkinson's Disease Diagnosis: A Machine Learning Analysis
    Yang, Yifeng
    Hu, Liangyun
    Chen, Yang
    Gu, Weidong
    Xie, Yuanzhong
    Nie, Shengdong
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, : 1062 - 1075
  • [34] Improving Parkinson's Disease Diagnosis with Machine Learning Methods
    Celik, Enes
    Omurca, Sevinc Ilhan
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [35] Machine Learning for the Diagnosis of Parkinson's Disease: A Review of Literature
    Mei, Jie
    Desrosiers, Christian
    Frasnelli, Johannes
    FRONTIERS IN AGING NEUROSCIENCE, 2021, 13
  • [36] Diagnosis of Parkinson's Disease Using Machine Learning Algorithms
    Thakur, Khushal
    Kapoor, Divneet Singh
    Singh, Kiran Jot
    Sharma, Anshul
    Malhotra, Janvi
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 205 - 217
  • [37] Parkinson's Disease Diagnosis Using Machine Learning and Voice
    Wroge, Timothy J.
    Ozkanca, Yasin
    Demiroglu, Cenk
    Si, Dong
    Atkins, David C.
    Ghomi, Reza Hosseini
    2018 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2018,
  • [38] Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson?s disease
    Junaid, Muhammad
    Ali, Sajid
    Eid, Fatma
    El-Sappagh, Shaker
    Abuhmed, Tamer
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 234
  • [39] The morphology of thalamic subnuclei in Parkinson's disease and the effects of machine learning on disease diagnosis and clinical evaluation
    Chen, Yingchuan
    Zhu, Guanyu
    Liu, Defeng
    Liu, Yuye
    Yuan, Tianshuo
    Zhang, Xin
    Jiang, Yin
    Du, Tingting
    Zhang, Jianguo
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2020, 411
  • [40] An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease
    Chen, Hui-Ling
    Wang, Gang
    Ma, Chao
    Cai, Zhen-Nao
    Liu, Wen-Bin
    Wang, Su-Jing
    NEUROCOMPUTING, 2016, 184 : 131 - 144