An Upper Bound for the 3-Tone Chromatic Number of Graphs with Maximum Degree 3

被引:3
|
作者
Dong, Jiuying [1 ]
机构
[1] Shanghai Inst Technol, Sch Sci, Shanghai 201418, Peoples R China
基金
中国国家自然科学基金;
关键词
t-tone k-coloring; t-tone chromatic number; tau(3)(G); Valid label; Extension; COLORINGS;
D O I
10.1007/s00373-022-02565-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A t-tone k-coloring of a graph G is a function f : V(G) -> (([k])(t)) such that vertical bar f (u) boolean AND f(v)vertical bar < d(u, v) for all u, v is an element of V(G) with u not equal v. We write [k] as shorthand for {1, ..., k} and denote by (([k])(t)) the family of t-element subset of [k]. The t-tone chromatic number of G, denoted tau(t)(G), is the minimum k such that G has a t-tone k-coloring. Cranston, Kim, and Kinnersley proved that if G is a graph with Delta(G) <= 3, then tau(2) (G) <= 8. In this paper, we consider 3-tone coloring of graphs G with Delta(G) <= 3. The previous best result was that tau(3) (G) <= 36; here we show that tau(3) (G) <= 21.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] An Upper Bound for the 3-Tone Chromatic Number of Graphs with Maximum Degree 3
    Jiuying Dong
    [J]. Graphs and Combinatorics, 2022, 38
  • [2] UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY
    BORODIN, OV
    KOSTOCHKA, AV
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) : 247 - 250
  • [3] Graphs with chromatic number close to maximum degree
    Kostochka, Alexandr. V.
    Rabern, Landon
    Stiebitz, Michael
    [J]. DISCRETE MATHEMATICS, 2012, 312 (06) : 1273 - 1281
  • [4] Circular chromatic index of graphs of maximum degree 3
    Afshani, P
    Ghandehari, M
    Ghandehari, M
    Hatami, H
    Tusserkani, R
    Zhu, XD
    [J]. JOURNAL OF GRAPH THEORY, 2005, 49 (04) : 325 - 335
  • [5] An upper bound for the chromatic number of line graphs
    King, A. D.
    Reed, B. A.
    Vetta, A.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (08) : 2182 - 2187
  • [6] Reexploring the upper bound for the chromatic number of graphs
    LI Shuchao 1
    2. Laboratory of Nonlinear Analysis
    [J]. Progress in Natural Science:Materials International, 2004, (03) : 84 - 86
  • [7] Reexploring the upper bound for the chromatic number of graphs
    Li, SC
    Mao, JZ
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2004, 14 (03) : 276 - 278
  • [8] A General Upper Bound for the Cyclic Chromatic Number of 3-Connected Plane Graphs
    Enomoto, Hikoe
    Hornak, Mirko
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (01) : 1 - 25
  • [9] On the Independence Number of Graphs with Maximum Degree 3
    Kanj, Iyad A.
    Zhang, Fenghui
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 238 - +
  • [10] On the independence number of graphs with maximum degree 3
    Kanj, Iyad
    Zhang, Fenghui
    [J]. THEORETICAL COMPUTER SCIENCE, 2013, 478 : 51 - 75