Aggregating and Searching frame in Video Using Semantic Analysis

被引:0
|
作者
Gadicha, Ajay B. [1 ]
Sarode, M. V. [2 ]
Thakare, V. M. [3 ]
机构
[1] PR Pote Patil Coll Engn Management, Dept CSE, Amravati, India
[2] PRGovt Polytech, Dept CSE, Yavatmal, India
[3] SGBA Univ, Dept CSE, Amravati, MH, India
关键词
CBVR; Semantic Analysis; STD; TF; MD; BOW; SHOT-BOUNDARY DETECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The idea of Video content reclamation is a youthful field that has its genetics grounded forebears instinctive intelligence, numerical signal rectification, statistics, natural language understanding, If researchers are concentrating all these fast growing fields so none of these parental fields alone antiquated able to directly solve the retrieval problem. In this paper shows the path towards a step by step mechanism of CBVR i.e. analysis of entire video, video segmentation, key frames mining, feature extraction mining for retrieving the video from large video datasets. The proposed system inclination focuses on performing key frame mining using adaptive thresholding algorithm and canny mechanism for feature extraction purpose. In order to legalize this claim, content based video reclamation systems were furnished using color histogram, features extraction and different approaches are applied for the supervision of the semantic temperament of each frame in the video.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Searching for people using semantic soft biometric descriptions
    Denman, Simon
    Halstead, Michael
    Fookes, Clinton
    Sridharan, Sridha
    PATTERN RECOGNITION LETTERS, 2015, 68 : 306 - 315
  • [42] Semantic Searching of Biological Documents Using Gene Ontology
    Mostafa, Marwa
    El Houby, Enas M. F.
    Salah, Akram
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2014, 38 (01): : 71 - 80
  • [43] Endoscopy Video Frame Classification Using Edge-based Information Analysis
    Rangseekajee, Nicharee
    Phongsuphap, Sukanya
    2011 COMPUTING IN CARDIOLOGY, 2011, 38 : 549 - 552
  • [44] Mining Relations Among Cross-Frame Affinities for Video Semantic Segmentation
    Sun, Guolei
    Liu, Yun
    Tang, Hao
    Chhatkuli, Ajad
    Zhang, Le
    Van Gool, Luc
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 522 - 539
  • [45] Key-frame Extraction of Wildlife Video based on Semantic Context Modeling
    Yong, Suet-Peng
    Deng, Jeremiah D.
    Purvis, Martin K.
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [46] Semantic Video Search by Automatic Video Annotation using Tensorflow
    Ashangani, Kithmi
    Wickramasinghe, K. U.
    De Silva, D. W. N.
    Gamwara, V. M.
    Nugaliyadde, Anupiya
    Mallawarachchi, Yashas
    PROCEEDINGS OF THE 2016 MANUFACTURING & INDUSTRIAL ENGINEERING SYMPOSIUM (MIES): INNOVATIVE APPLICATIONS FOR INDUSTRY, 2016, : 49 - 52
  • [47] Video Stabilization Using Sliding Frame Window
    Shagrithaya, Keerthan S.
    Gurushankar, Eeshwar
    Srikanth, Deepak
    Ramteke, Pravin Bhaskar
    Koolagudi, Shashidhar G.
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 227 - 232
  • [48] A generic framework for semantic sports video analysis using Dynamic Bayesian Networks
    Wang, F
    Ma, YF
    Zhang, HJ
    Li, JT
    11TH INTERNATIONAL MULTIMEDIA MODELLING CONFERENCE, PROCEEDINGS, 2005, : 115 - 122
  • [49] Semantic-based traffic video retrieval using activity pattern analysis
    Xie, D
    Hu, WM
    Tan, T
    Peng, JY
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 693 - 696
  • [50] Ontology-driven semantic video analysis using Visual Information Objects
    Papadopoulos, Georgios Th.
    Mezaris, Vasileios
    Kompatsiaris, Loarmis
    Strintzis, Michael G.
    SEMANTIC MULTIMEDIA, PROCEEDINGS, 2007, 4816 : 56 - +