Viewpoint Insensitive Actions Recognition Using Hidden Conditional Random Fields

被引:0
|
作者
Ji, Xiaofei [1 ,2 ]
Liu, Honghai [1 ]
Li, Yibo [2 ]
机构
[1] Univ Portsmouth, Sch Creat Technol, Intelligent Syst & Biomed Robot Grp, Portsmouth PO1 2UP, Hants, England
[2] Shenyang Inst Aeronaut Engn, Sch Automat, Shenyang, Peoples R China
关键词
Human action recognition; Viewpoint insensitive; Conditional random field; Hidden conditional random field;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The viewpoint issue has been one of the bottlenecks for research development and practical implementation of human motion analysis. In this paper, we introduce a new method, e.g., hidden conditional random fields(HCRFs) to achieve viewpoint; insensitive human action recognition. The HCRF model can relax the independence assumption of the generative models. So it is very suitable to model the human actions from different actors and different viewpoints. Experiment results on a public dataset demonstrate the effectiveness and robustness of our method.
引用
收藏
页码:369 / +
页数:3
相关论文
共 50 条
  • [41] Improved Hierarchical Models for Non-Native Chinese Handwriting Recognition Using Hidden Conditional Random Fields
    Bai, Hao
    Zhang, Xi-Wen
    [J]. FIFTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2020, 11526
  • [42] Variational Hidden Conditional Random Fields with Beta Processes
    Luo, Chen
    Sun, Shiliang
    Zhao, Jing
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [43] Hidden Conditional Ordinal Random Fields for Sequence Classification
    Kim, Minyoung
    Pavlovic, Vladimir
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6322 : 51 - 65
  • [44] Hyperparameter tuning for hidden unit conditional random fields
    Yang, Eun-Suk
    Kim, Jong Dae
    Park, Chan-Young
    Song, Hye-Jeong
    Kim, Yu-Seop
    [J]. ENGINEERING COMPUTATIONS, 2017, 34 (06) : 2054 - 2062
  • [45] Weakly supervised detection of video events using hidden conditional random fields
    Shirahama, Kimiaki
    Grzegorzek, Marcin
    Uehara, Kuniaki
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2015, 4 (01) : 17 - 32
  • [46] Protein fold recognition using segmentation conditional random fields (SCRFs)
    Liu, Y
    Carbonell, J
    Weigele, P
    Gopalakrishnan, V
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (02) : 394 - 406
  • [47] Biomedical named entities recognition using conditional random fields model
    Sun, Chengjie
    Guan, Yi
    Wang, Xiaolong
    Lin, Lei
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4223 : 1279 - 1288
  • [48] Gaussian Conditional Random Fields for Face Recognition
    Smereka, Jonathon M.
    Kumar, B. V. K. Vijaya
    Rodriguez, Andres
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 155 - 162
  • [49] Contextual Object Recognition with Conditional Random Fields
    Can, Gulcan
    Firat, Orhan
    Vural, Fatos T. Yarman
    [J]. 2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [50] CRANDEM: Conditional Random Fields for Word Recognition
    Morris, Jeremy
    Fosler-Lussier, Eric
    [J]. INTERSPEECH 2009: 10TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2009, VOLS 1-5, 2009, : 3035 - 3038