Stochastic Fractional Hamiltonian Monte Carlo

被引:0
|
作者
Ye, Nanyang [1 ]
Zhu, Zhanxing [2 ,3 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Peking Univ, Ctr Data Sci, Beijing, Peoples R China
[3] Beijing Inst Big Data Res BIBDR, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel stochastic fractional Hamiltonian Monte Carlo approach which generalizes the Hamiltonian Monte Carlo method within the framework of fractional calculus and Levy diffusion. Due to the large "jumps" introduced by Levy noise and momentum term, the proposed dynamics is capable of exploring the parameter space more efficiently and effectively. We have shown that the fractional Hamiltonian Monte Carlo could sample the multi-modal and high-dimensional target distribution more efficiently than the existing methods driven by Brownian diffusion. We further extend our method for optimizing deep neural networks. The experimental results show that the proposed stochastic fractional Hamiltonian Monte Carlo for training deep neural networks could converge faster than other popular optimization schemes and generalize better.
引用
收藏
页码:3019 / 3025
页数:7
相关论文
共 50 条
  • [21] Microcanonical Hamiltonian Monte Carlo
    Robnik, Jakob
    De Luca, G. Bruno
    Silverstein, Eva
    Seljak, Uros
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [22] CONSERVATIVE HAMILTONIAN MONTE CARLO
    McGregor, Geoffrey
    Wan, Andy T.S.
    [J]. arXiv, 2022,
  • [23] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194
  • [24] Hamiltonian Monte Carlo Swindles
    Piponi, Dan
    Hoffman, Matthew D.
    Sountsov, Pavel
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3774 - 3782
  • [25] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959
  • [26] Fractional Langevin Monte Carlo: Exploring Levy Driven Stochastic Differential Equations for Markov Chain Monte Carlo
    Simsekli, Umut
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [27] Implementing the Hamiltonian Monte Carlo Sampling Algorithm in Stochastic Assessment of Power Systems
    Diogo J. F. Reis
    José E. O. Pessanha
    [J]. Journal of Control, Automation and Electrical Systems, 2022, 33 : 522 - 530
  • [28] Implementing the Hamiltonian Monte Carlo Sampling Algorithm in Stochastic Assessment of Power Systems
    Reis, Diogo J. F.
    Pessanha, Jose E. O.
    [J]. JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (02) : 522 - 530
  • [29] Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo
    Havasi, Marton
    Hernandez-Lobato, Jose Miguel
    Jose Murillo-Fuentes, Juan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [30] Multilevel Monte Carlo for stochastic differential equations with additive fractional noise
    Peter E. Kloeden
    Andreas Neuenkirch
    Raffaella Pavani
    [J]. Annals of Operations Research, 2011, 189 : 255 - 276