Univariate and Multivariate Machine Learning Forecasting Models on the Price Returns of Cryptocurrencies

被引:9
|
作者
Miller, Dante [1 ]
Kim, Jong-Min [1 ]
机构
[1] Univ Minnesota Morris, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
关键词
cryptocurrencies; deep learning networks; recurrent neural networks; long short-term memory networks; VOLATILITY; GARCH; BITCOIN;
D O I
10.3390/jrfm14100486
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this study, we predicted the log returns of the top 10 cryptocurrencies based on market cap, using univariate and multivariate machine learning methods such as recurrent neural networks, deep learning neural networks, Holt's exponential smoothing, autoregressive integrated moving average, ForecastX, and long short-term memory networks. The multivariate long short-term memory networks performed better than the univariate machine learning methods in terms of the prediction error measures.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Analyzing CAD competence with univariate and multivariate learning curve models
    Hamade, Ramsey F.
    Jaber, Mohamed Y.
    Sikstrom, Sverker
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2009, 56 (04) : 1510 - 1518
  • [32] Forecasting and Trading of the Stable Cryptocurrencies With Machine Learning and Deep Learning Algorithms for Market Conditions
    Shamshad, Hasib
    Ullah, Fasee
    Ullah, Asad
    Kebande, Victor R.
    Ullah, Sibghat
    Al-Dhaqm, Arafat
    [J]. IEEE ACCESS, 2023, 11 : 122205 - 122220
  • [33] Forecasting Univariate Solar Irradiance using Machine learning models: A case study of two Andean Cities
    Diaz-Bedoya, Daniel
    Gonzalez-Rodriguez, Mario
    Clairand, Jean-Michel
    Serrano-Guerrero, Xavier
    Escriva-Escriva, Guillermo
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 296
  • [34] Electricity Price Forecasting: The Dawn of Machine Learning
    Jedrzejewski, Arkadiusz
    Lago, Jesus
    Marcjasz, Grzegorz
    Weron, Rafal
    [J]. IEEE POWER & ENERGY MAGAZINE, 2022, 20 (03): : 24 - 31
  • [35] Univariate and multivariate forecasting of tourism demand using state-space models
    Jorge-Gonzalez, Elisa
    Gonzalez-Davila, Enrique
    Martin-Rivero, Raquel
    Lorenzo-Diaz, Domingo
    [J]. TOURISM ECONOMICS, 2020, 26 (04) : 598 - 621
  • [36] COMPUTATIONAL SURVEY OF UNIVARIATE AND MULTIVARIATE LEARNING-CURVE MODELS
    BADIRU, AB
    [J]. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, 1992, 39 (02) : 176 - 188
  • [37] Modeling and forecasting pelagic fish production using univariate and multivariate ARIMA models
    Tsitsika, Efthymia V.
    Maravelias, Christos D.
    Haralabous, John
    [J]. FISHERIES SCIENCE, 2007, 73 (05) : 979 - 988
  • [38] Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting
    Limouni, Tariq
    Yaagoubi, Reda
    Bouziane, Khalid
    Guissi, Khalid
    Baali, El Houssain
    [J]. INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2022, 11 (03): : 815 - 828
  • [39] Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?
    Wang, Yudong
    Wu, Chongfeng
    [J]. ENERGY ECONOMICS, 2012, 34 (06) : 2167 - 2181
  • [40] A Univariate and multivariate machine learning approach for prediction of significant wave height
    Domala, Vamshikrishna
    Kim, Tae-Wan
    [J]. 2022 OCEANS HAMPTON ROADS, 2022,