On generalized Gauduchon nilmanifolds

被引:4
|
作者
Latorre, A. [1 ]
Ugarte, L. [2 ]
Villacampa, R. [1 ]
机构
[1] Acad Gen Mil, IUMA, Ctr Univ Def, Crta Huesca S-N, Zaragoza 50090, Spain
[2] Univ Zaragoza, IUMA, Dept Matemat, Campus Plaza San Francisco, E-50009 Zaragoza, Spain
关键词
Nilmanifold; Complex structure; Hermitian metrics; FILIFORM LIE-ALGEBRAS; COMPLEX STRUCTURES; TORSION METRICS; STRONG KAHLER; MANIFOLDS; EXISTENCE;
D O I
10.1016/j.difgeo.2017.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct invariant generalized Gauduchon metrics on the product of two complex nilmanifolds that do not necessarily admit this kind of metrics. In particular, we prove that the product of a locally conformal Kaller nilmanifold and a balanced nilmanifold admits a generalized Gauduchon metric. In complex dimension 4, generalized Gauduchon nilmanifolds with (the highest possible) nilpotency step s = 5 are given, as well as 3-step and 4-step examples for which the center of their underlying Lie algebras does not contain any non-trivial J-invariant ideal. These examples show strong differences between the SKT and the generalized Gauduchon geometries of nilmanifolds. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 164
页数:15
相关论文
共 50 条
  • [31] Gauduchon metrics with prescribed volume form
    Szekelyhidi, Gabor
    Tosatti, Valentino
    Weinkove, Ben
    ACTA MATHEMATICA, 2017, 219 (01) : 181 - 211
  • [32] Submersions on nilmanifolds and their geodesics
    Homolya, S
    Nagy, PT
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 415 - 428
  • [33] SKT structures on nilmanifolds
    Romina M. Arroyo
    Marina Nicolini
    Mathematische Zeitschrift, 2022, 302 : 1307 - 1320
  • [35] THE INAUDIBLE GEOMETRY OF NILMANIFOLDS
    DETURCK, D
    GLUCK, H
    GORDON, C
    WEBB, D
    INVENTIONES MATHEMATICAE, 1993, 111 (02) : 271 - 284
  • [36] Balanced and strongly Gauduchon cones on solvmanifolds
    Latorre, Adela
    Ugarte, Luis
    Villacampa, Raquel
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (09)
  • [37] MINIMAL MODELS OF NILMANIFOLDS
    HASEGAWA, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (01) : 65 - 71
  • [38] Affine structures on nilmanifolds
    Burde, D
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) : 599 - 616
  • [39] THE RICCI FLOW FOR NILMANIFOLDS
    Payne, Tracy L.
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (01) : 65 - 90
  • [40] The anomaly flow on nilmanifolds
    Mattia Pujia
    Luis Ugarte
    Annals of Global Analysis and Geometry, 2021, 60 : 501 - 537